Rail-Highway Crossing Resource Allocation Procedure - USER'S GUIDE, SECOND EDITION

0

US Department of Transportation Federal Highway Administration

Federal Railroad Administration

2887-137535

Federal Highway Administration Office of Research, Development and Technology Washington, DC 20590

Federal Railroad Administration Office of Safety Washington, DC 20590

FHWA-IP-86-11 DOT-TSC-FHWA-85-2

July 1986

Implementation Package

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

X

1. Report No.	2 Government Acco	ession No. 3.	Recipient's Catalog No.	
FHWA-IP-86-11	P887 13	75357A\$		
4. Title and Subtitle		5.	Report Date	
Rail-Highway Crossing Resour Procedure -User's Guide, Seco	rce Allocation and Edition		July 1986	
		6.	Performing Organization Code	
7. Author(s)			DTS-54	
John Hitz		8.	Performing Organization Repor	t No.
9. Performing Organization Name and Au	ddress		DOI-ISC-FHWA-82-2	
U.S. Department of Transport	ation me Administratio			
Transportation Systems Cente			HW621 / H6336	
Cambridge, MA 02142			. Contract or Grant No.	
12 Sponsoring Agency Name and Address			Type of Report and Period Cover	red
		{	Final Report	
U.S. Department of Transportation Federal Highway Administration	U.S Department of Federal Railroad A	Transportation dministration	October 1984 - July 19	86
Office of Research, Development and Techno Washington, DC 20590	logy Office of Safety Washington, DC 20	590 14	Sponsoring Agency Code	
l			HRT-20	
16. Abstract The Highway Safety Acts of and 1982 provide funding auth rail-highway crossings. Safet motorist warning devices suc states and railroads in detern crossing improvements, the U Rail-Highway Crossing Resou DOT accident and casualty pr and accidents at crossings, ar for improvement on a cost-et to be installed. This guide pr application of the DOT Rail- of the guide incorporates reso formula, extended data on wa highway stop signs as a warni	1973 and 1976 and horizations for in- ty improvements in h as flashing light hining effective a J.S. Department of rediction formula d the resource al ffective basis and ovides interested Highway Crossing ults of recent reso arning device effe- ing device option	d the Surface T dividual states frequently con as or flashing II llocations of F of Transportati rocedure. The which predict location mode recommends fusers with con Allocation Pr earch including ectiveness, an under certain	ransportation Acts of 197 to improve safety at publ sist of the installation of a ghts with gates. To assist ederal funds for rail-highy on has developed the DOT procedure consists of the s the number of casualtie l, which nominates crossin he type of warning device nplete information for ocedure. This second edit g a casualty prediction d consideration of standard conditions.	8 ic active way s igs ion d
17. Key Words Rail-Highway Crossing		18. Distribution S	tatement	
Grade Crossing		DOCUMENT	IS AVAILABLE TO THE PUBLIC THRO	UGH
Railroad Safety Resource Allocation		SPRINGFIEL	IAL TECHNICAL INFORMATION SERV) VIRGINIA 22161	ICE.
19. Security Classif. (of this report)	20 Security Class	f (of this page)	21. No. of Pages 22. Price	e
UNCLASSIFIED	UNCLAS	SSIFIED	164	
L	<u></u>		<u> </u>	

.

.

Form DOT F1700.7 (8-72) Reproduction of completed page authorized

	Approximate Co	mversions to M	letric Measures		1 0			Approximate Co	nversions from	n Metric Measures	
Symbol	When You Know	Multiply by	To Find	Symbol	• 		Symbol	When You Know	Multiply by	To Find S	Vmbol
					 	8		ł	LENGTH		
	1	LENGTH	1			9 	ΨΨ.	millimeters	10.0	inches	5
<u>9</u>	inches	25	cantimeters	5	իհ		5 E	cantimeters meters		increa feet	5 £
٤Ì	fant vante	ģ	cantimaters	5			e <u>Ş</u>	meters kilometers	1.1 0.0	yards miles	<u>P</u> ē
12		1.6	kilameters	5	יויי 						
		AREA			ιψ	<u> </u>		I	AREA		
	1			•	' 9		، س	square centimeters	0.16	square inches	<u>'</u> 2'
3:	square inches	6.6	square centimeters	j.	' '		È	square meters	7 - 1	square yards	ě,
2 Z	equare feet Equare verds		tquere meters squere meters	5 2	 		È z	aquere kilometers hectares (10,000 m ²) 2.6	square miles acres	Ë
2	tiquare miles	2.6	equare kilometers hectores	Ĩ,	ւիդ						
				!				ł	MASS (weight		
	-	Indian) covy	1		դ					1	
3	OUNCH	8	grama		 11		<u>د</u> دو	grams kiloorame	0.035	ounces	3 4
4	pounds short tons	0 2 2 0	kilograma tonnes	2 - 2	''' 	18 111	2	tonnes (1000 kg)	12	thort ton)
	(q) 000C)	VOLUME			ւրիլ	2 0			VOLUME		
	1		1			1111		l			
9	tespoons	ø	milliliters	Ē	' '		Ē	millilitars	0.03	fluid ounces	11 oz
2.	tablenpoort	16	milliliters	Ē) 111111		liters	2.1	pints	ž
			militiers Lister	Ē.	l'			liters	0.26	onlions	; 7
ă	pints	0.47	litars		 ' 	11151	Ę.	cubic meters	36	cubic feet	2
ð.	the straight	90°0 90°0	liters		ηų		Ē	cubic meters	5.L	cubic yards	ŗ9Ă
12	cubic feet	50.0	cubic maters	. 7	' 	-		TCM	000 4 11 100 1	1	
ł	cubic yards	0.76	cubic meters	2	'l' ') 					
	TEMP	ERATURE (ex	(act)		, In Ini Ini		ပွ	Calsius termoratura	9/5 (then add 32)	Fahrenheit temperature	Чo
Ъ	Fahranhait	6/8 latter	Celsius	S	.h.i,						
	temperatura	subtracting 32)	temperature		' ł' ' 			Ч С	R	9 8.6	212
					יוי				- -		8- 8-
		ther exect conver- joint and Manure	Hors and more detail 1 a. Price \$2,25 BD Cate	ion ion	111				- «	- 04 - 03	Ľ _₿
NA C13	10 286.			ł	Inches	5 111		l S	•	37	å

METRIC CONVERSION FACTORS

iv

PREFACE

14

The Department of Transportation's (DOT) rail-highway crossing accident prediction formula and resource allocation model, described in this report, were developed at the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration's (FRA) Office of Safety and the Federal Highway Administration's (FHWA) Office of Research, Development and Technology. When used together, these procedures provide an automated and systematic means of making preliminary costeffective allocations of funds for improvement options among individual crossings.

This user's guide provides complete information for application of the DOT Procedures. Preparation of the guide was the overall responsibility of John Hitz of TSC. Mary Cross of TSC and George Reed of Systems Development Corporation were responsible for development and description of computer programs required for application of the procedures.

Preceding

TABLE OF CONTENTS

Sect	ion	Page
1.	Introduction	1
	1.1 Purpose1.2 Background1.3 Organization of Guide	1 1 1
2.	DOT Rail-Highway Crossing Resource Allocation Procedure - Overview	3
3.	DOT Accident and Casualty Prediction Formula	7
	3.1 Introduction3.2 Description of Formulas for Accident Prediction	7 8
	 3.2.1 Overview 3.2.2 Basic Formula 3.2.3 Accident History 3.2.4 General Accident Prediction Formula 	8 9 19 20
	3.3 Description of Formulas for Casualty Prediction	27
	3.3.1 Overview3.3.2 Fatality and Injury Prediction Formulas3.3.3 Combined Casualty Index Formula	27 28 36
4.	Resource Allocation Model	39
	4.1 Introduction4.2 Resource Allocation Model for Active Warning devices	39 ¹ 39
	 4.2.1 Overview 4.2.2 Description of Model Algorithm 4.2.3 Demonstration of Model Algorithm 4.2.4 Active Warning Device Cost Data 4.2.5 Active Warning Device Effectiveness Data 4.2.6 Field Verification and Revision of Resource Allocation Results 	39 42 47 51 54 56
	4.3 Resource Allocation Model for Standard Highway Stop Signs	61 **
5.	Application of DOT Resource Allocation Procedure	65
	5.1 DOT Accident and Casualty Prediction Formula	65

<u>r</u>____

TABLE OF CONTENTS (Cont.)

<u>Se</u>	ection			Page
		5.1.1	Manual Calculation of Predicted Accidents and Casualties Computer Programs for Calculation of Predicted Accidents	65
		J.1.2	and Casualties	70
	5.2	Comp	uter Programs for Resource Allocation Model	74
		5.2.1	Resource Allocation Model for Active Warning Devices Resource Allocation Model for Standard Highway Stop Signs	74 83
		<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Resource / modulion model for standard mgnway stop signs	05
	REF	EREN	CES	91
	APP	ENDIX	Κ Α	A-1
	APP	ENDIX	КВ	B-1
	APP	ENDIX	(C	C-1
	APP	ENDIX	(D	D-1

٩

]

- - -

LIST OF ILLUSTRATIONS

٩.

ć

Figure		Page
2-1	RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE	4
3-1	DOT RAIL-HIGHWAY CROSSING ACCIDENT PREDICTION FORMULA	8
3-2	LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASSES 1, 2, 3, 4	16
3-3	LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASSES 5, 6, 7	17
3-4	LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASS 8	18
3-5	TYPICAL PLOTS OF PROBABILITY OF FATAL ACCIDENTS P(FAIA) AND PROBABILITY OF INJURY ACCIDENTS (P(IAIA) AS A FUNCTION OF TIMETABLE TRAIN SPEED ms	35
4-1	RESOURCE ALLOCATION ALGORITHM	45
4-2	"FIELD VERIFICATION WORKSHEET"	57
5-1	SAMPLE OUTPUT FROM THE ACCIDENT AND CASUALTY PREDICTION REPORT PROGRAM (PREDICTED ACCIDENTS PER YEAR)	75
5-2	SAMPLE OUTPUT FROM THE ACCIDENT AND CASUALTY PREDICTION REPORT PROGRAM (PREDICTED FATAL ACCIDENTS PER YEAR)	76
5-3	SAMPLE OUTPUT FROM THE ACCIDENT AND CASUALTY PREDICTION REPORT PROGRAM (PREDICTED COMBINED CASUALTY INDEX PER YEAR)	77
5-4	SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM (ACCIDENT REDUCTION)	85
5-5	SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM (FATAL ACCIDENT REDUCTION)	86
5-6	SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM (COMBINED CASUALTY INDEX REDUCTION)	87
5-7	SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM (ACCIDENT REDUCTION, STANDARD EFFECTIVENESS VALUES)	88
5-8	SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM (ACCIDENT REDUCTION, STOP SIGN CANDIDATE INDICATION)	89
5-9	SAMPLE OUTPUT FROM STOP SIGN PROGRAM (PREDICTED ACCIDENTS)	90

.

LIST OF TABLES

<u>Table</u>	·	Page
3-1	EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS	12
3-2	FACTOR VALUES FOR CROSSINGS WITH PASSIVE WARNING DEVICES	13
3-3	FACTOR VALUES FOR CROSSINGS WITH FLASHING LIGHT WARNING DEVICES	14
3-4	FACTOR VALUES FOR CROSSINGS WITH GATE WARNING DEVICES	15
3-5	FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY I YEAR OF ACCIDENT DATA (T=1)	21
3-6	FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY 2 YEARS OF ACCIDENT DATA ($T=2$)	22
3-7	FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY 3 YEARS OF ACCIDENT DATA (T=3)	23
3-8	FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY 4 YEARS OF ACCIDENT DATA ($T=4$)	24
3-9	FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY 5 YEARS OF ACCIDENT DATA ($T=5$)	25
3-10	EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS FOR FATAL ACCIDENT PROBABILITY FORMULA	30
3-11	EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS FOR INJURY ACCIDENT PROBABILITY FORMULA	31
3-12	FACTOR VALUES FOR FATAL ACCIDENT PROBABILITY FORMULA	32
3-13	FACTOR VALUES FOR INJURY ACCIDENT PROBABILITY FORMULA	33
4-1	EFFECTIVENESS/COST SYMBOL MATRIX	43
4-2	SAMPLE CROSSINGS FOR ALGORITHM DEMONSTRATION	48
4-3	EFFECTIVENESS/COST INPUT DATA	48
4-4	STEP 2: CALCULATION OF ACCIDENT REDUCTION/COST RATIOS	50
4-5	STEP 3: RANKING OF ACCIDENT REDUCTION/COST RATIOS	51
4-6	WARNING DEVICE IMPROVEMENT COSTS, 1983	52
4-7	STANDARD SET OF EFFECTIVENESS VALUES FOR WARNING DEVICE IMPROVEMENTS	55

LIST OF TABLES (Cont.)

Table		Page
4-8	EXTENDED SET OF EFFECTIVENESS VALUES FOR WARNING DEVICE IMPROVEMENTS	56
5-1	CHARACTERISTICS OF SAMPLE CROSSING	65

EXHIBITS

		Page
A-1	ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM	A-1
A-2	VARIABLE DICTIONARY FOR THE ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM	A-7
A-3	SAMPLE INPUT TO ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM	A-9
A-4	INPUT DATA FIELD DESCRIPTION FOR THE ACCIDENT AND CASUALTY PREDICTION PROGRAM	A-10
A-5	SAMPLE OUTPUT FROM ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM	A-11
A-6	ACCIDENT AND CASUALTY PREDICTION FORMULA REPORT PROGRAM	A-12
B-1	ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM	B-1
B-2 ·	VARIABLE DICTIONARY FOR THE ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM	B-6
B-3	SAMPLE DATA INPUT TO ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM	B-7
B-4	SAMPLE OUTPUT FROM ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM	B-8
B-5	FIELD DESCRIPTIONS FOR OUTPUT FROM THE ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM	B-9
C-1	RESOURCE ALLOCATION PROGRAM	C-1
C-2	VARIABLE DICTIONARY FOR THE RESOURCE ALLOCATION PROGRAM	C-7
C-3	SAMPLE OUTPUT FROM RESOURCE ALLOCATION PROGRAM	C-9
C-4	FIELD DESCRIPTIONS FOR OUTPUT FROM THE RESOURCE ALLOCATION PROGRAM	C-10
C-5	RESOURCE ALLOCATION REPORT PROGRAM	C-11
D-1	STANDARD STOP SIGN REPORT PROGRAM	D-1

х

1. INTRODUCTION

1.1 PURPOSE

This is the second edition of a guide intended to provide interested users with complete information for application of the DOT Rail-Highway Crossing Resource Allocation Procedure.

1.2 BACKGROUND

The Highway Safety Acts of 1973 and 1976 and the Surface Transportation Assistance Acts of 1978 and 1982 provide funding authorizations for individual states to improve safety at public rail-highway crossings. Safety improvements frequently consist of the installation of motorist warning devices such as flashing lights or flashing lights with gates. In support of these safety efforts, several projects have been undertaken by the U.S. Department of Transportation (DOT) to assist states and railroads in determining effective use of Federal funds for rail-highway crossing safety improvement. One of these projects has developed the DOT Rail-Highway Crossing Resource Allocation Procedure to assist state and railroad program managers in identifying candidate crossings for improvement. This procedure, referred to hereafter as the DOT Procedure, recommends crossing safety improvements that yield the greatest accident reduction benefits based on consideration of predicted accidents and casualties at crossings, the cost and effectiveness of warning device options and the budget limit.

Two analytical methods have been developed as part of the DOT Procedure. Their development followed completion of a joint U.S. DOT-AAR (Association of American Railroads) National Rail-Highway Crossing Inventory (hereafter referred to as The Inventory), which numbered and collected inventory information for all public and private crossings in the United States. (Ref. 1) The first analytical method included in the DOT Procedure is the DOT Accident and Casualty Prediction Formula, which computes the expected number of accidents and casualties at crossings based on information available in The Inventory and crossing accident data files. The second analytical method is a resource allocation model designed to rank candidate crossings for improvement on a cost-effective basis and recommend the type of warning device to be installed. This guide provides complete information on how to use these two analytical methods.

1.3 ORGANIZATION OF GUIDE

Chapter 2 provides a technical overview of the DOT Procedure and its two major elements, the DOT accident and casualty prediction formulas and the resource allocation model.

Chapter 3 describes the purpose, development and characteristics of the DOT accident and casualty prediction formulas.

Chapter 4 describes the resource allocation model and its data requirements.

Chapter 5 discusses procedures for use of the DOT Procedure. A sample application is provided as a means of demonstrating its use for different situations.

2. DOT RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE - OVERVIEW

There are currently approximately 200,000 public at-grade rail-highway crossings in the United States. At an average cost of approximately \$55,000 per installation, there are insufficient funds available to install automatic warning systems at each of these crossings. The DOT Procedure was designed to assist in determining how limited safety improvement funds should be allocated to specific crossings and warning device improvements to achieve the greatest reduction in accidents and casualties.

Figure 2-1 illustrates the basic functions of the DOT Procedure. Inventory information and the accident histories of the individual crossings being considered are used by the DOT accident prediction formula to provide a list of crossings ranked by the estimated number of accidents or casualties that will occur at each crossing. State crossing programs commonly use such rankings, produced by various formulas, as a basis for determining safety improvements; i.e., crossings are improved in the order of their predicted accident levels, with the crossing having the highest accident rate treated first and so forth. However, if the program objective is to achieve maximum accident reduction for a given total cost, this procedure must be extended to consider the different warning device options which are available for each crossing and their differing costs and effectiveness for reducing accidents. For example, installing a flashing light at the crossing with the tenth highest accident rate might yield a higher accident reduction/cost ratio than installing an automatic gate at the most hazardous crossing. Consequently, the resource allocation model uses the predicted accidents or casualties at each crossing together with information on the safety effectiveness and costs of alternative warning device improvements and the funding level available to determine the most cost-effective set of improvement decisions; i.e., which crossings to improve and the types of warning devices to install at those crossings to result in the greatest accident or casualty reduction given the available funding.

The DOT Procedure does not dictate final decisions for crossing improvements, but does recommend programs to aid in making informed decisions. As an analytical procedure, its recommendations are dependent on accurate input data and assumptions. Errors in The Inventory and assumptions regarding warning device cost and effectiveness may cause inappropriate recommendations. To ensure accuracy of the input data, they

should be validated by a diagnostic team as part of their normal duties in making field evaluations of recommended improvements. While in the field, the diagnostic team should also make note of other considerations that may impact final improvement decisions but are not included in the DOT Procedure. These considerations include highway congestion, school bus and hazardous materials traffic, restricted sight distance, and other unusually hazardous, costly or mitigating characteristics of individual crossings. A procedure for performing this evaluation is described in Section 4.2.6. Results of the DOT Procedure, findings of the diagnostic team, inclusion of any state warrants and the judgement of state and local officials should all be considered before final improvement decisions are made.

The primary role of the DOT Procedure is to assist states and railroads in developing crossing safety improvement programs. The first stage in developing these programs is usually to prepare a list of candidate crossings for safety improvements. To assist in preparing this list, the DOT accident prediction formula can be used to rank crossings by predicted accidents or casualties to identify hazardous crossings potentially needing safety improvements. The resource allocation model can then be used to evaluate alternative programs for improving these crossings. For example, the impacts on program benefits of changes in key program parameters such as budget limits, warning device installation strategies (e.g. flashing lights only, gates only) and warning device cost and effectiveness assumptions can be determined. Analysis of these results will help in deciding upon budget levels for crossing improvements and in determining the effectiveness of implementing state warrants specifying installation strategies. Once key program parameters have been decided upon, the DOT Procedure will provide an initial recommended program, based on cost-effectiveness considerations, for review by the state. The DOT Procedure is also useful for railroads in providing recommended uniform improvement programs over their entire rail systems that pass through several states.

Initial results of the DOT Procedure provide useful guidance to diagnostic teams by specifying crossings with recommended improvements that should be field inspected and data that must be checked for accuracy. Using the field verification procedure described in Section 4.2.5, diagnostic teams can determine revised cost-effective improvement decisions for particular crossings where original data were found incorrect. The revised results obtained by the diagnostic team then form a useful basis upon which state and local officials can finalize crossing improvement programs.

3. DOT ACCIDENT AND CASUALTY PREDICTION FORMULA

3.1 INTRODUCTION

Many crossing hazard formulas have been developed in the past and used extensively by those concerned with rail-highway crossing safety. (Ref. 2) Examples are the New Hampshire Formula, the Peabody-Dimmick Formula, the Mississippi Formula, and the Ohio Method. Availability of The Inventory and national accident data by crossing were major considerations which influenced development of the DOT accident and casualty prediction formula. The Inventory contains information on the physical and operating characteristics of all rail-highway crossings in the United States and, thus, affords an improved basis for rail-highway crossing accident and casualty prediction.

The DOT formulas are termed "absolute" formulas since they estimate numbers of accidents and casualties. Other formulas, such as the New Hampshire Formula, are termed "relative" formulas since they provide an index which is associated with expected accidents or casualties only on a relative basis i.e., a larger index means more expected accidents or casualties but the relationship is not linear. The distinction between absolute and relative formulas is important when considering use of a formula to assist in determining cost-effective allocations of improvement funds, as discussed in Section 4. If program effectiveness is to be measured in terms of tangible benefits such as reduced accidents, an absolute formula must be used to ensure that the benefits of alternative actions are consistently evaluated. The use of absolute formulas, such as the DOT formulas, is therefore recommended to support resource allocation decisions.

Both relative and absolute formulas can be used to provide rankings of crossings on the basis of their relative hazards. A comparison of the DOT formulas with several other well-known formulas (Ref. 3) shows the DOT formulas to have significantly improved performance in this regard.

The functions of the DOT accident and casualty prediction formulas are described in Figure 3-1. The formulas provide a means of calculating the expected annual number of accidents and casualties at a crossing on the basis of the crossing's characteristics described in The Inventory and the crossing's historical accident experience described in the FRA Railroad Accident/Incident Reporting Systems (RAIRS). The accident and

Preceding page blank

casualty predictions are produced by the DOT formulas in two steps. Predicted accidents are obtained in the first step using a set of formulas described in Section 3.2. The resulting accident predictions are expressed as expected number of accidents per year at a crossing. If desired, predicted casualties are then obtained in the second step using another set of formulas as described in Section 3.3. The casualty calculations depend on use of predicted accident results from the first step. The casualty predictions for a crossing are expressed in three ways: (1) expected number of fatal accidents per year, (2) expected number of injury accidents per year and (3) total combined casualty index (a weighted combination of fatal and injury accidents per year).

FIGURE 3-1. DOT RAIL-HIGHWAY CROSSING ACCIDENT PREDICTION FORMULA

3.2 DESCRIPTION OF FORMULAS FOR ACCIDENT PREDICTION

3.2.1 Overview

Accident predictions are produced by combining two independent predictions of a crossing's accidents to produce a more accurate resultant prediction. The two independent predictions are obtained from the following sources:

1. A formula described in Section 3.2.2 provides an initial prediction of accidents on the basis of a crossing's characteristics as described in The Inventory. This formula, termed the "basic formula", is used to predict crossing accidents in a manner similar to other common formulas such as the Peabody-Dimmick formula.

2. A second prediction is provided by the actual observed accident history at a crossing as described in Section 3.2.3. This prediction assumes that future accidents per year are approximated by the average historical accident rate. It is referred to as a crossing's "accident history".

The above two independent predictions are combined as a weighted average using the general accident prediction formula described in Section 3.2.4.

3.2.2 Basic Formula

The initial prediction of a crossing's accidents (a) is determined from the basic accident prediction formula described in Equation 3-1 below. The basic formula produces a prediction on the basis of a crossing's characteristics as described in The Inventory. The technique used for developing the basic formula involved applying nonlinear multiple regression techniques to crossing characteristics stored in The Inventory and to accident data contained in the FRA Railroad Accident/Incident Reporting System (RAIRS). The 1976 accident file and the August 1976 Inventory were used to develop the formula. Half of the file was used to determine the formula coefficients by regression and iteration (data set A) and the other half was used for testing of the formula (data set B). Data sets A and B were disjoint, of equal size and comprised of a random sample of records from The Inventory, including all records for which accident data existed in the RAIRS file. Each data set was categorized into two groups of accident and nonaccident crossings.

The resulting basic formula can be expressed as a series of factors which, when multiplied together, yield the initial predicted accidents per year (a) at a crossing. Each factor in the formula represents a characteristic of the crossing described in The Inventory. The general expression of the basic formula is shown below:

where

a = initial accident prediction, accidents per year at the crossing

K = constant for initialization of factor values at 1.00*

EI = factor for exposure index based on product of highway and train traffic

MT = factor for number of main tracks

DT = factor for number of thru trains per day during daylight

HP = factor for highway paved (yes or no)

MS = factor for maximum timetable speed*

HT = factor for highway type*

HL = factor for number of highway lanes

Three sets of equations are used to determine the value of each factor, one for each of the following three categories of warning devices:

I. Passive, including the following warning device classes:

Class I - No signs or signals Class 2 - Other signs Class 3 - Stop signs Class 4 - Crossbucks

2. Flashing lights, including the following warning device classes:

Class 5 - Special e.g., flagman Class 6 - Highway signals, wig-wags or bells Class 7 - Flashing lights

^{*}New formula factors not included in the previous version of the basic formula described in References 3 and 4.

3. Gates, including the following warning device class:

Class 8 - Automatic gates with flashing lights

The crossing characteristic factor equations for the three warning device categories are shown in Table 3-1. Each set of factor equations should be used only for crossings with the warning device classes for which it was designed. For example, if it is desired to predict the number of accidents at a crossing with crossbucks, then the passive set of equations should be used.

The numerical value of each factor is related to the degree of correlation that a specific crossing characteristic was found to have with crossing accident rates. For those cases in Table 3-1 where the value of the factor is indicated as a constant 1.0, it was found that the characteristic did not have a significant relationship to crossing accidents.

The structure of the basic accident prediction formula makes it possible to construct look-up tables of numerical values for the crossing characteristic factors. To predict the accidents at a particular crossing whose Inventory characteristics are known, the values of the factors are found in the table and multiplied together. The factor values for the three warning device categories (passive, flashing lights and gates) are found in Tables 3-2, 3-3 and 3-4, respectively. Detailed procedures for use of the tables and computer automation of the accident prediction formula are presented in Section 5.1.

An inspection of the factor value tables shows that exposure index (EI), based on the product of annual average daily highway traffic (c) and average daily train traffic (t), has the strongest relationship to predicted accidents. All other factors can be seen as having a secondary relationship to predicted accidents. It is useful in understanding the nature of the basic accident prediction formula to plot the relationship of accidents to the primary crossing characteristics of highway and train traffic, while holding the secondary factors constant at nominal values. When this is done, predicted accidents (a), can be viewed as a surface defined over the c, t plane. The plots are shown in Figures 3-2, 3-3 and 3-4 for the three warning device categories. The predicted accident surface is TABLE 3-1. EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a = K x EI x MT x DT x HP x MS x HT x HL

	MAXIMUM HIGHMAY HIGHMAY SPEED TYPE LANES Factor Factor Factor MS HT HL) e0.0077ms e-0.1000(ht-1) 1.0	1.0 1.380(hl-1)	1.0 1.0 e ^{0,1036(h1-1)}	INVENTORY ht CODE VALUE 01 - 1 02 2 2 03 3 04 4 04 4 03 5 04 3 05 6 05 6 06 6 07 4 11 1 12 2 09 6 01 1 13 2 14 4 13 2 14 4 15 5 16 1 17 5 5 5 10 1 10 1 1
ACTORS	HIGHWAY PAVED FACTOR HP	e-0.6160(hp	1.0	1.0	terial expressway terial
ROSSING CHARACTERISTIC F	DAY THRU TRAINS Factor DT	((d + 0.2)/0.2) ^{0.1336}	((d + 0.2)/0.2) ^{0.04} 70	1.0	HIGHMAY TYPE <u>RURAL</u> Interstate Other principal ar Minor arterial Major collector Minor collector Local Interstate Other freeway and Other principal ar Minor arterial Collector Local
C	MAIN TRACKS FACTOR MT	e ^{0.2094mt}	e ^{0.1088mt}	e ^{0.2912mt}	icles y
	EXPOSURE INDEX Factor EI	$((e \times t + 0.2)/0.2)^{0.3334}$	((c x t + 0.2)/0.2) ⁰ .2953	$((c \times t + 0.2)/0.2)^{0.3116}$	verage number of highway ve ^t (total both directions) total train movements per da f main tracks number of thru trains per da aylight paved, yes = 1.0, no = 2.0 timetable speed, mph type factor value f highway lanes
	FORMULA CONSTANT K	0.002268	0.003646	0.001088	<pre>c = annual a per day t = average t = number o d = average i d = highway i t = highway i t = number o </pre>
	CROSSING	PASSIVE	FLASHING LIGHTS	GATES	

9/81

TABLE 3-2. FACTOR VALUES FOR CROSSINGS WITH PASSIVE WARNING DEVICES

Ħ K = formula constant
 "c" x "t" = number of highway vehicles per day, "c", multiplied by total train movements per day, "t"
 "T = exposure index factor
 T = main tracks factor
 T = day thru trains factor
 T = highway paved factor
 MS = maximum timetable speed factor
 HT = highway lanes factor
 HI = highway lanes factor Highway Lanes - വന - ഗ്ര - മറ 0.82 0.90 0.74 0.67 0.61 1.00 ŧ Highway Code## 01&11 02&12 06&14 07816 08&17 09&19 Type MS Timetable Speed Maximum 0.54 1,00 HР 1 (yes) Highway 2 (no) Paved Ы Day Thru Trains 21-30 31-40 41-60 11-20 æ σ 9 0 1.00 1.52 1.52 2.31 2.85 Ť Main Tracks 0-0-00-00 13, 11 14, 02 11, 28 11, 28 11, 28 11, 28 11, 28 11, 28 11, 28 11, 28 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 29 11, 20 11 1.00 2.22 3.30 3.30 5.24 5.24 5.86 6.89 6.89 7.95 7.95 10.78 12.06 Ξ
 1
 5
 10

 21 20
 21

 21 20
 21

 21 20
 21

 21 20
 31

 21 20
 31

 21 20
 31

 21 20
 30

 31 50
 30

 301 400
 500

 301 1000
 1300

 1001 1300
 1300

 1001 1300
 1300

 1001 1300
 1300

 1001 1300
 1300

 1001 1300
 1300

 1001 1000
 2000

 3001 4000
 5000

 10001 2000
 30000

 100001 10000
 5000

 1100001 10000
 50000

 1100001 10000
 50000

 1100001 10000
 50000

 1100001 90000
 50000

 Ę. 300000 100001- 370000 × "°" 30001-* .002268 ¥

ÅENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a = K x EI x MT x DT x HP x MS x HT x HL

Less than one train per day.

**For definition of highway type codes, see Table 3-1.

18/6

TABLE 3-3. FACTOR VALUES FOR CROSSINGS WITH FLASHING LIGHT WARNING DEVICES

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a = K x EI x MT x DT x HP x MS x HT x HL

					_								-	_			_												_													ן	/81
		F	1.00	1.15	1.32	1.51	1.74	1.99	2.29	2.63	3.02															"t"																	6
	H1 ghway	Lanes	-	2	m	-3	5	9	7	80	6															its per day,																	
		ΗT	1.00		1.00		1.00		1.00		1.00		1.00													полешеп																	
Highway	Type	Code	01&11		02&12		06&14		07&16		08417		09&19													r total trair																	
-	ole	MS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00					iplied by																	
Max1mur	Timetal	Speed	0	ŝ	10	15	20	25	30	35	0 h	45 5	50	55	60	65	70	75	80	85	06	2				c", multi																	
		ЧН	1.00		1.00																					day, "																	
	Highway	Paved	1 (yes)		2 (no)																					vehicles per					actor												
	2	DT	1.00	1.09	1.12	1.14	1.15	1.17	1.18	1.18	1.19	1.20	1.20	1.23	1.26	1.28	1.30									highway '	ctor	r	actor	tor	speed f:	or	tor										
	Day Thr	Trains	0	-	2	m	7	Ś	Q.	7	8	6	10	11-20	21-30	31-40	41-60								constant	number of	e index fa	acks facto	u trains f	paved fac	timetable	type fact	lanes fac										
		ΗТ	1.00	1.11	1.24	1.39	1.55	1.72	1.92																ormula ("t" = 1	exposure	main tra	dav thri	highway	maximum	highway	highway										
	Main	Tracks	0	-	~	m	3	5	و.																r - X	"o" X	EI =	нт	DT =	HP =	MS =	HT =	۲ ۲										
		EI	1.00	2.27	2.99	3.59	4.17	4.79	5,52	6.27	7.20	8.22	9.07	9.77	10.37	10.89	11.79	12.89	13.80	14.71	15.72	16.67	14.11	19.89	21.97	23.66	26.08	28.80	31.02	32.91	35.34	38.06	40.39	42.43	45.11	48.18	50.85	54.84	59.56	64.25	68.86	er day.	•
		× "t"		Ś	-10	20	30	50	80	120	200	300	100	500	600	700	1000	1300	1600	2000	2500	3000	4000	6000	8000	10000	15000	20000	25000	30000	00001	50000	60000	70000	00006	110000	130000	180000	230000	30000	370000	train p	-
		"C"	6 O*	÷	÷	-	21-	31-	51-	81-	121-	201-	301-	401-	501-	601-	701-	1001-	1301-	1601-	2001-	2501-	-1005	1001-	6001-	8001-	10001-	15001-	20001-	25001-	30001-	40001-	50001-	60001-	70001-	90001-	110001-	130001-	180001-	230001-	300001-	than one	
		*	0.003646				:																					-			_											Less	

**For definition of highway type codes, see Table 3-1.

;

TABLE 3-4. FACTOR VALUES FOR CROSSINGS WITH GATE WARNING DEVICES

1,11 1.51 1.53 1.58 1.68 2.07 2.29 8 .c" x "t" = number of highway vehicles per day, "c", multiplied by total train movements per day, "t" EI = exposure index factor MT = main tracks factor DT = day thru trains factor HP = highway paved factor MS = maximum timetable speed factor HT = highway type factor HL = highway ' Η Highway Lanes 000 in o r m = 1.00 1.00 1.0 1.00 1.00 00.1 ΗŢ Highway Type Code** 02&12 06414 07&16 09419 08&17 01&11 Ϋ́ Maximum Timetable Speed 1.00 1.00 ₽ H1ghway Paved 1 (yes) 2 (no) Ы Day Thru Trains 11-20 21-30 31-40 41-60 6 2 mat ŝ æ 1.00 1.34 2.40 3.21 5.74 Ŧ Main Tracks ŝ ø 7.00 63.16 68.41 43.03 46.53 49.53 52.18 55.67 59.68 74.63 80.85 86.98 Е
 1 5

 11 20

 21 30

 21 30

 21 30

 21 30

 21 30

 21 30

 21 30

 21 30

 21 30

 201 300

 201 300

 201 400

 201 400

 201 120

 300 400

 300 400

 300 400

 300 4000

 3000 2000

 30001 10000

 30001 20000

 300001 20000

 300001 300000

 300001 300000

 300001 300000
 x "t" "O" 5 .001088 ×

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: a = K x EI x MT x DT x HP x MS x HT x HL

Less than one train per dav.

**For definition of highway type codes, see Table 3-1.

9/81

NUMBER OF TRAINS PER DAY, t

FIGURE 3-2. LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASSES 1,2,3,4

ł

1

I.

ł

1

ļ

ł

1

ł

ł

FIGURE 3-3. LINES EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASSES 5,6,7

5

*Numbers on lines denote predicted accidents per year.

FIGURE 3-4. LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASS 8

portrayed by a set of equal-accident-level lines, which are analagous to contour lines on a topographical map. The larger the accident value, the higher above the c, t plane is the accident surface.

The plots show that the relationship of accidents to highway and train traffic is strongest at low values of traffic. An increase in highway and/or train traffic from low levels, say from 1000 to 2000 cars per day or 5 to 10 trains per day, increases the accident level to a greater extent than a similar change at high traffic volumes. This nonlinear relationship is important when considering the relative impacts on accident levels of future changes in traffic patterns between crossings that currently have different traffic volumes.

For different values of the secondary factors, the surfaces would have the same essential character. This is based on the observation from sensitivity results that any change in the secondary factors, other than d (number of thru trains per day during daylight), will cause the surface to be changed only by a constant. For different values of d, the multiplier of the surface is a function of d, and hence the effect is more complex, but it is expected that the character of the surface would not change significantly.

3.2.3 Accident History

The second independent prediction of a crossing's accident rate is derived from the crossing's accident history. This information is obtained from the FRA RAIRS file which contains records of all accidents that occurred at crossings. The required measure of accident history is the ratio N/T where N is the number of accidents which occurred at a crossing over a period of T years. At this time (July, 1984), the FRA RAIRS has 9 years of accident data correlated with The Inventory.

Use of accident history, along with the prediction obtained from the basic formula, improves the overall prediction. This improvement results because accident history serves as a surrogate for other characteristics which affect crossing hazards but are not included in the Inventory; e.g., sight distance. The most accurate predictions, in theory, will result from use of all the available accident history, assuming crossing characteristics remained constant. However, the extent of improvement is minimal if data for more than 5 years are used. It is therefore recommended that only data for the most recent 5 years of accident history be used. This ensures both good performance

from the accident prediction formula and use of the most relevant data. Accident history information older than 5 years may be misleading because of changes that occur to crossing characteristics over time. If it is known that a significant change has occurred to a crossing during the most recent 5 years, such as a warning device upgrade, only the accident data since the change should be used.

3.2.4 General Accident Prediction Formula

The general DOT accident prediction formula can be expressed as follows:

$$A = \frac{T_0}{T_0 + T} (a) + \frac{T}{T_0 + T} \left(\frac{N}{T}\right)$$
(3-2)

where

A = final accident prediction, accidents per year at the crossing

- a = initial accident prediction from basic formula (equation 3-1), accidents per year at the crossing
- $\frac{N}{T}$ = accident history prediction, accidents per year, where N is the number of observed accidents in T years at the crossing
- T_O = formula weighting factor = 1.0 / (0.05 + a)

The general DOT accident prediction formula (Equation 3-2) calculates a weighted average of a crossing's predicted accidents from the basic formula (a, Equation 3-1) and accident history (N/T). Values for the final accident prediction (A), obtained from Equation 3-2, for different values of the initial prediction (a), from Equation 3-1, and different accident histories (N/T) are tabularized in Tables 3-5 to 3-9. Each table represents results for a specific number of years for which accident history data are available. If, the number of years of accident data, T, is a fraction, the final accident prediction, A, can be interpolated from the tables or determined directly from the formula.

TABLE 3-5. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY ,1 YEAR OF ACCIDENT DATA (T=1).

S	0.238 0.292 0.346 0.378 0.450 0.500	0.550 0.598 0.698 0.698 0.698 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.10000 1.10000 1.10000 1.100000 1.100000000	1,001 1,001 1,001 1,0000 1,0000 1,0000 1,00000000	4.1348 4.1348 4.1378 4.1378 4.1384 4.13844 4.13844 4.13844 4.13844 4.13844 4.138444 4.138444 4.1384444 4.13844444444444444444444444444444444444
YEARS 4	0.190 0.236 0.280 0.324 0.357 0.409	0.450 0.534 0.6034 0.60985 0.60985	1.939 1.939 2.114 2.114 2.537 2.537 2.537	2,200 2,0000
, N, IN T 3	0.143 0.179 0.215 0.284 0.318	0.351 0.384 0.415 0.447 0.478 0.478	1.207 1.387 1.545 1.686 1.686 1.923 2.024 2.024	2.200 2.270 2.270 2.277 2.257 2.754 2.754 2.754 2.754 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.75547 2.755477 2.75547 2.75547 2.7555757 2.7555757777777777777
ACCIDENTS 2	0.095 0.123 0.150 0.176 0.202 0.227	0.252 0.277 0.301 0.325 0.325 0.348 0.560	0.097 1.152 1.152 1.257 1.351 1.436	1.755 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.7555 1.
VUMBER OF	0.048 0.0648 0.084 0.102 0.119 0.119	0.153 0.170 0.186 0.186 0.202 0.217 0.215 0.216	0.586 0.758 0.758 0.872 0.829 0.949 1.000	1.128 1.128 1.128 1.128 1.255 1.255 1.328 1.328 1.369 1.369 1.369 1.369
4 0	0.000 0.009 0.019 0.028 0.037 0.037	0.054 0.063 0.079 0.087 0.160 0.160	0.323 0.323 0.464 0.464 0.462 0.462 0.462 0.462	0.5533 0.5533 0.5573 0.5588 0.667 0.667 0.667 0.667 0.687 0.697 0.
INITIAL PREDIC- TION FROM BASIC MODEL, a	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			8698375757575757575 869837575757575 869837575757575 869837575757575 869837575757575 869837575757575 8698375757575 8698375757575 8698375757575 8698375757575 869837575757575 8698375757575757575757575757575757575757575

r i

;

TABLE 3-6. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY ,2 YEARS OF ACCIDENT DATA (T=2).

œ	0,364 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 0,578 1,467 1,467 1,467 1,648 3,657 3,657 3,572 3,573 3,5755 3,5755 3,5755 3,5755 3,57555 3,57555 3,575555555555
2	0.318 0.318 0.569 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.734 0.568 0.568 1.500 2.603 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.50000 2.50000 2.50000 2.50000000000
RS 6	2, 8135 2, 8155 2, 8135 2, 8155 2, 81555 2, 81555 2, 815555 2, 81555555555555555555555555555555555555
, IN T YEA 5	00.22 00.22 00.22 00.250 00.550 0
CDENTS, N, 4	0.182 0.223 0.223 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.444 0.444 0.538 0.800 0.800 0.800 0.538 1.277 1.277 1.277 1.480 1.621 1.7777 1.777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.77777 1.77777 1.77777 1.777777 1.77777777
ER OF ACC	0.176 0.176 0.170 0.202 0.263 0.263 0.273 0.274 0.3794 0.3798 0.3798 0.3794 0.3794 0.3794 0.3794 0.3794 0.4233 1.414 1.241 1.241 1.241 1.273 1.414 1.273 1.414 1.523 1.554 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.553 1.554 1.5533 1.
NUMB 2	0.101 0.00000000
1	0.0023 0.
° o	0.000 0.009 0.018 0.018 0.018 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.1330 0.1330 0.1330 0.1330 0.1330 0.1330 0.1330 0.1330 0.1330 0.1
INITIAL PREDIC- TION FROM BASIC MODEL, a	2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 3-7. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY , 3 YEARS OF ACCIDENT DATA (T=3).

12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11	00000000000000000000000000000000000000
10	0.551 0.551 0.551 0.551 0.551 0.551 0.55511 0.55510 0.55510 0.55510 0.55510 0.555100 0.55510000000000
6	0.459 0.537 0.537 0.653 0.653 0.653 0.669 0.731 0.669 0.731 0.669 0.731 0.669 0.731 0.669 0.913 2.573 2.573 2.573 2.573 2.765 2.7555 2.7555 2.7555 2.7555 2.7555 2.7555 2.7555 2.7555 2.7555 2.75555 2.75555 2.75555 2.755555 2.75555555555
ARS 8	0.5548 0.748 0.747 0.747 0.747 0.757 0.757 0.8554 0.8554 0.8554 0.8554 0.8554 0.8554 0.8555 0.8555 0.7573 0.8555 0.7573 0.7573 0.8555 0.75730 0.75730 0.75730 0.757500 0.75730 0.75730 0.7575000000000000000000000000000000
, IN T YE	0.354 0.354 0.476 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.577 0.754 0.754 1.901 1.914 1.914 1.901 1.914 1.901 1.901 1.901 1.901 1.901 2.232 2.139 2.139 2.139 2.139 2.139 2.232 2.130 2.232 2.130 2.232 2.130 2.232 2.232 2.136 2.232 2.130 2.232 2.3322 2.332 2.332 2.332 2.332 2.332 2.332 2.332 2.332 2.332 2.332 2.332
)ENTS, N, 6	0.314 0.326 0.457 0.457 0.457 0.457 0.457 0.457 0.659 0.659 0.651 1.759 1.771 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744 1.7744
OF ACCII 5	0.21 0.263 0.3663 0.3663 0.3663 0.3663 0.3663 0.4733 0.5865 0.5865 0.5865 0.5655 0.5655 0.5665 0.5655 0.57550 0.57550 0.57550 0.57550 0.575500 0.57550000000000
NUMBER 4	0.174 0.2174 0.2482 0.2482 0.2482 0.2482 0.2482 0.4584 0.45888 0.458888 0.458888 0.458888 0.458888 0.4588888 0.45888888 0.45888888888888888888888888888888888888
3	0.155 0.151 0.151 0.218 0.254 0.254 0.255 0.1120 0.11200 0.11200 0.1120000000000
2	0.887 0.1110 0.1173 0.1173 0.1173 0.173 0.173 0.173 0.173 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.225 0.2550 0.25500 0.25500 0.25500 0.2550000000000
1	0.557 0.557 0.115 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.152 0.151 0.152 0.151 0.152 0.151 0.152 0.151 0.051 0.051 0.051 0.051 0.051 0.051 0.05510 0.05510 0.05510 0.05510 0.05510 0.05510 0.05510000000000
0	0.286 0.266 0.266 0.028 0.028 0.028 0.028 0.225 0.2550 0.2550 0.2550 0.2550 0.2550000000000
INITIAL PREDICTION FROM BASIC MODEL a	0.00 0.03 0.03 0.04 0.05 0.06 0.10 0.10 0.10 0.10 0.10 0.10 0.10

TABLE 3-8. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY ,4 YEARS OF ACCIDENT DATA (T=4).

	14	0.583	0.685	0.781	0.871	0.956	1.036	1111	1.182	1.250	1.314	1.375	1.850	2.167	2,393	2,563	2.694	2.800	2.886	2.958	3.019	3.071	3.117	3.156	3.191	3.222	3.250	3.275	3.298	3.318	3.337	3.354	3.370	3.385	3.398	3.411	I
	I3	0.542	0.637	0.727	0.811	0.890	0.964	1.035	1.101	1.164	1.224	1.281	1.725	2.021	2.232	2.391	2.514	2.613	2.693	2.760	2.817	2.866	2,908	2.945	2.978	3,007	3.033	3.056	3.077	3.097	3.114	3.130	3.145	3.159	3.171	3.183	, I
, , ,	12	0.500	0.589	0.672	0.750	0.824	0.893	0.958	1.020	1.079	1.135	1.188	1.600	1.875	2.071	2.219	2.333	2.425	2.500	2,563	2.615	2.661	2.700	2.734	2,745	2.792	2.816	2.837	2.857	2.875	2.891	2,906	2.920	2.933	2.944	2,955	
:	=	0.458	0.540	0.617	0.689	0.757	0.821	0.882	0.939	0.993	1.045	1.094	1.475	1.729	1.911	2.047	2.153	2.238	2,307	2,365	2.413	2.455	2.492	2.523	2,551	2.576	2.599	2.619	2.637	2.653	2.668	2.682	2.695	2,707	2.718	2.728	T
	10	0.417	0.492	0.563	0.629	0.691	0.750	0.806	0.858	0.908	0.955	1.000	1.350	1.583	1.750	1.875	1.972	2.050	2.114	2.167	2.212	2.250	2,283	2.313	2.338	2.361	2.382	2.400	2.417	2.432	2.446	2.458	2.470	2.481	2.491	2.500	I
YEARS	۰ ا	0.375	0.444	0.508	0.568	0.625	0.679	0.729	0.777	0.822	0.845	0.906	1.225	1.437	1.589	1.703	1.792	1.863	1.920	1.969	2.010	2.045	2.075	2.102	2.125	2.146	2.164	2.181	2.196	2.210	2,223	2.234	2.245	2,255	2.264	2.272	I I
I, IN T	~	0.333	0.395	0.453	0.508	0.559	0.607	0.653	0.696	0.737	0.776	0.812	1.100	1.292	1.429	1.531	1.611	1.675	1.727	1.771	1.808	1.839	1.867	1.891	1.912	1.931	1.947	1.962	1.976	1.989	2.000	2.010	2.020	2.029	2.037	2.045	
DENTS, N	-	0.292	0.347	0.398	0.447	0.493	0.536	0.576	0.615	0.651	0.686	0.719	0.975	1.146	1.268	1.359	1.431	1.488	1.534	1.573	1.606	1.634	1.658	1.680	1.699	1.715	1.730	1.744	1.756	1.767	1.777	1.786	1.795	1.803	1.810	1.817	
OF ACCI	0	0,250	0.298	0.344	0.386	0.426	0.464	0.500	0.534	0.566	0.596	0.625	0.850	1.000	1.107	1.188	1.250	1.300	1.341	1.375	1.404	1.429	1.450	1.469	1.485	1.500	1.513	1.525	1.536	1.545	1.554	1.562	1.570	1.577	1.583	1.589	
NUMBER	2	0.208	0.250	0.289	0.326	0.360	0.393	0.424	0.453	0.480	0.506	0.531	0.725	0.854	0.946	1.016	1.069	1.113	1.148	1.177	1.202	1.223	1,242	1.258	1.272	1.285	1.296	1.306	1.315	1.324	1.332	1.339	1.345	1.351	1.356	1.362	
	4	0.167	0.202	0.234	0.265	0.294	0.321	0.347	0.372	0.395	0.417	0.438	0.600	0.708	0.786	0.844	0.889	0.925	0.955	0.979	1.000	1.018	1.033	1.047	1.059	1.069	1.079	1.088	1.095	1.102	1.109	1.115	1.120	1.125	1.130	1.134	
	2	0.125	0.153	0.180	0.205	0.228	0.250	0.271	0.291	0.309	0.327	0.344	0.475	0.563	0.625	0.672	0.708	0.738	0.761	0.781	0.798	0.813	0.825	0.836	0.846	0.854	0.862	0.869	0.875	0.881	0.886	0.891	0.895	0.899	0.903	0.906	I
	2	0.083	0.105	0.125	0.144	0.162	0.179	0.194	0.209	0.224	0.237	0.250	0.350	0.417	0.464	0.500	0.528	0.550	0.568	0.583	0.596	0.607	0.617	0.625	0.632	0.639	0.645	0.650	0.455	0.659	0.663	0.667	0.670	0.673	0.676	0.679	I
		0.042	0.056	0.070	0.083	0.096	0.107	0.118	0.128	0.138	0.147	0.156	0.225	0.271	0.304	0.328	0.347	0.363	0.375	0.385	0.394	0.402	0.408	0.414	0.419	0.424	0.428	0.431	0.435	0.437	0.440	0.44 3	0.445	0.447	0.449	0.451	
	0	0.000	0.008	0.016	0.023	0.029	950.0	0.042	0.047	0.053	0.058	0.062	0.100	0.125	0.143	0.156	0.167	0.175	0.182	0.188	0.192	0.196	0.200	0.203	0.206	0.208	0.211	0.213	0.214	0.216	0.217	0.219	0.220	0.221	0.222	0.223	
INITIAL PREDICTION FROM BASIC	MODEL a	0.00	0.01	0.02	£0°0	0.04	0.05	0.06	0.07	0.08	60.0	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.50	
TABLE 3-9. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY ,5 YEARS OF ACCIDENT DATA (T=5).

	14	00000000000000000000000000000000000000
	13	0.520 0.520 0.6889 0.6989 0.69900 0.69900 0.69900 0.69900 0.69900 0.69900 0.69900 0.699000 0.6990000000000
	12	0.480 0.558 0.772 0.772 0.7770 0.77700 0.77700 0.77700 0.77700 0.77700 0.77700 0.77700000000
	11	0.440 0.710 0.700 0.710 0.700 0.710 0.700 0.710 0.700 0.710 0.700 0.710 0.700 0.710 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.700000000
	10	0.400 0.533 0.533 0.553 0.553 0.5533 0.5533 0.5548 0.5548 0.5548 0.5548 0.5548 0.5548 0.55680 0.55680 0.55680 0.55680 0.55680000000000000000000000000000000000
YEARS	¢	0.350 0.481 0.481 0.481 0.481 0.482 0.477 0.433 0.477 0.477 0.477 1.484 1.484 1.484 1.484 1.776 1.776 1.484 1.776 1.777 1.776 1.777 1.7776 1.7777 1.7776 1.7777 1.7776 1.7777 1.7776 1.7777 1.7776 1.7777 1.7776 1.7777 1.7776 1.77777 1.7776 1.77777 1.7776 1.7777777777
T NI .	œ	0.320 0.377 0.479 0.479 0.479 0.524 0.557 0.579 0.579 0.578 0.572 0.572 0.572 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.5555 1.55555 1.55555 1.55555 1.55555 1.55555 1.55555555
JENTS, N	~	0.328 0.378 0.378 0.378 0.378 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.629 0.5590000000000
OF ACCII	4	0.2240 0.2250 0.2250 0.2250 0.2251 0.2255 0.25555 0.25555 0.25555 0.25555 0.25555 0.25555 0.25555 0.25555 0.255555 0.255555 0.25555555555
NUMBER	S	0.238 0.238 0.307 0.307 0.307 0.307 0.338 0.344 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.938 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.10
	4	0.160 0.160 0.222 0.250 0.276 0.276 0.276 0.3233 0.3233 0.3244 0.3252 0.3244 0.3253 0.3254 0.3254 0.3254 0.3254 0.3253 0.3254 0.3255 0.400 0.775 0.618 0.775 0.618 0.777 0.777 0.777 0.8555 0.8555 0.8755 0.8777 0.9714 0.9
	м	0.120 0.120 0.170 0.170 0.233 0.233 0.252 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.273 0.273 0.721 0.721 0.733 0.733 0.733 0.733
	0	0.080 0.117 0.152 0.152 0.157 0.157 0.157 0.218 0.229 0.2510 0.2520 0.2533 0.25510 0.555100 0.555100 0.55510000000000
	T.	0.054 0.054 0.054 0.054 0.055 0.057 0.119 0.019 0.119 0.0000000000
	0	0.008 0.015 0.021 0.027 0.0000000000
VITIAL	ROM BASIC	2 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H B	드로 전	<u> </u>

Referring to Tables 3-5 to 3-9, the value of the final accident prediction (A) is determined from the intersection of the appropriate column and row for the values of the initial prediction (a) and the observed number of accidents (N). Thus, if a = 0.05 and N = 4, for T = 5 (Table 3-9), the number of predicted accidents (A) is 0.300.

An investigation of the general DOT accident prediction formula and the tables will show the following interrelationship of A, a, and N/T:

- The final prediction (A) will be a weighted average of a and N/T, i.e., it will lie between the values of a and N/T.
- 2. If a = N/T, then the final prediction (A) will equal a and N/T.
- 3. If no accident history is available, T = 0, then the final prediction (A) will equal the initial prediction (a) from the basic formula.

3.3 DESCRIPTION OF FORMULAS FOR CASUALTY PREDICTION

3.3.1 Overview

The effort to develop casualty prediction formulas was motivated by the recognition that rail-highway crossing accidents are not equally severe. In recent years about 67 percent of crossing accidents resulted in no casualties while all fatalities resulted from only 6.6 percent of all accidents. Clearly, crossings that exhibit a tendency toward more severe accidents, should be given priority for safety improvements. A formula which can help in identifying these crossings will improve the safety benefits obtained from crossing improvements. The casualty prediction formulas described here represent the results of a successful effort to achieve that objective. (Ref. 4)

Two casualty prediction formulas have been developed, a fatality prediction formula and an injury prediction formula. When used with the accident prediction formulas, described in Section 3.2, these two formulas provide two measures of accident severity, predicted fatal accidents and predicted injury accidents. A fatal accident is defined as an accident which results in at least one fatality independent of injuries or property damage. An injury accident is an accident which results in no fatalities and at least one injury independent of property damage.

The casualty prediction formulas are designed to be used with the general accident prediction formula (Equation 3-2) to produce the estimates of fatal and injury accidents per year at crossings. The casualty prediction formulas used without the accident prediction formula produce estimates of the probability of a casualty accident given that an accident occurred. For example, the fatality prediction formula estimates the probability of a fatal accident given that an accident occurred at a crossing; i.e., fatal accidents per accident. When this estimate is multiplied by the crossing's estimated accidents from the accident prediction formula (Equation 3-2) the result is predicted fatal accidents per year at the crossing. As a further illustration, if a crossing has a predicted accident rate of 0.5 accidents per year and a predicted fatal accident probability of 0.2 fatal accidents per accident, the result will be a predicted fatal accidents per year of 0.1.

In addition to predicted fatal and injury accidents per year, a third measure of accident severity can be obtained from use of the casualty prediction formulas. This

measure, referred to as the combined casualty index (CCI), is a weighted sum of the fatal and injury accident predictions. It provides a more comprehensive index of accident severity; however, its use involves making judgements as to the relative severity of fatal and injury accidents.

Development of the casualty prediction formulas involved performing regression analyses of data on crossings which experienced accidents. The dependent variables for the fatality and injury regression formulas were allowed one of two values indicating whether the accident did or did not result in a fatal or injury accident. The independent variables represented various characteristics of the accident crossings as desribed in the inventory. Accident and inventory data for 1978, 1979, and 1980 were used for formula development. The resulting formulas were evaluated using 1981 data. The regression procedure used is referred to as the logistic descriminant approach which employs an iterative weighted regression technique. This approach is the same as that used in development of the accident prediction formulas. (Ref. 3)

3.3.2 Fatality and Injury Prediction Formulas

The formulas for predicting the probabilities of fatal accidents and injury accidents can be expressed in terms of several factors which are combined by simple mathematical operations in a manner similar to the basic accident prediction formula (Section 3.2.2). Each factor in the formulas respresents a characteristic of the crossing as described in The Inventory. The probability of a fatal accident given an accident is expressed as:

$P(FAIA) = 1/(1 + CF \times MS \times TT \times TS \times UR)$

where:	P(FAIA)	= probability if a fatal accident, given an accident
	CF	= formula constant (695)
	MS	= factor for maximum timetable train speed
	TT	= factor for thru trains per day
	TS	= factor for switch trains per day
	UR	= factor for urban or rural crossing

(3-3)

The probability of an injury accident given an accident is expressed as:

$$P(IAIA) = (1 - P(FAIA))/(1 + CI \times MS \times TK \times UR)$$
(3-4)

where:	P(IAIA)	= probability of an injury accident, given an accident
	P(FAIA)	= probability of a fatal accident, given an accident, obtained from
		Equation 3-3.
	CI	= formula constant (4.280)
	MS	= factor for maximum timetable train speed
	тк	= factor for number of tracks
	UR -	= factor for urban or rural crossing

The equations for calculating values of the crossing characteristic factors are listed in Table 3-10 for the fatal accident probability formula and Table 3-11 for the injury accident probability formula. To simplify use of the formulas, the values of the crossing characteristic factors have been tabulated for typical values of crossing characteristics. These values are to be found in Tables 3-12 and 3-13 for the fatal accident and injury accident probability formulas, respectively. An inspection of the factor value tables shows the relative influence of the various factors on accident severity. In the case of fatal accident severity (Table 3-12) maximum timetable train speed has factor values which range over two orders of magnitude while the other factor values range over less than one order of magnitude. Maximum timetable train speed, therefore, has a much stronger influence on fatal accident severity than the number of trains or the urban-rural location of the crossing. For injury accident severity (Table 3-13) the number of tracks has a slightly greater influence on severity than maximum timetable train speed. The urban-rural location of the crossing has the least influence on injury accident severity.

TABLE 3-10. EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS FOR FATAL ACCIDENT PROBABILITY FORMULA

Fatal Accident Probability Formula: P(FAIA) =	1/(1 + CF x MS x TT x TS x UR)
CROSSING CHARACTERISTIC FACTOR	EQUATION FOR CROSSING CHARACTERISTIC FACTOR
Formula constant	CF = 695
Maximum Timetable Train Speed Factor	$MS = ms^{-1.074}$
Thru Trains Per Day Factor	TT = (tt + 1) - 0.1025
Switch Trains Per Day Factor	$TS = (ts + 1)^{0.1025}$
Urban - Rural Crossing Factor	$UR = e^{0.1880ur}$
where:	·
ms = maximum timetable train speed, mph	
tt = number of thru trains per day	· · · · ·
ts = number of switch trains per day	
ur: urban crossing = 1, rural crossing = 0	

30

.

TABLE 3-11. EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS FOR INJURY ACCIDENT PROBABILITY FORMULA

Injury Accident Probability Formula: P(IA!A) =	(1 - P(FA!A))/(1 + CI x MS x TK x UR)
CROSSING CHARACTERISTIC FACTOR	EQUATION FOR CROSSING CHARACTERISTIC FACTOR
Fatal Accident Probability	P(FA!A), see Equation 3-3 and Table 3-10
Formula Constant	CI = 4.280
Maximum Timetable Train Speed Factor	$MS = ms^{-0.2334}$
Number of Tracks Factor	$TK = e^{0.1176tk}$
Urban - Rural Crossing Factor	$UR = e^{0.1844}ur$
where:	
ms = maximum timetable train speed, mph	
tk = total number of tracks at crossing	
ur: urban crossing = 1, rural crossing = 0	

•

.

Fatal Acci	dent Probabil	ity Formu	la: P(FA	14) = 1/(1 + CF x	MS x TT	x TS X UR)	
FORMULA CONSTANT CF	MAXIMUM TIMETABLE TRAIN SPEED	MS	THRU TRAINS PER DAY	E	SWITCH TRAINS PER DAY	IS	URBAN- RURAL CROSSING	UR
695.0	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.000 0.178 0.084 0.055 0.019 0.012 0.012 0.012 0.012 0.012	0 - 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.000 0.931 0.934 0.868 0.8848 0.832 0.833 0.790 0.790 0.732 0.732 0.732 0.732 0.732	о-имдиюrо50030 0-имдиюrо50030	1.000 1.119 1.119 1.152 1.152 1.238 1.256 1.238 1.256 1.256	0 (rural) 1 (urban)	1.207
	001	0.001	DC DC	0.00	D C	-44		

~

TABLE 3-12. FACTOR VALUES FOR FATAL ACCIDENT PROBABILITY FORMULA

TABI	LE 3-13. FA(CTOR VALUES I	FOR INJU	JRY ACCIDE	NT PROB	ABILITY FOR	MULA
Injury Accident Probabi	lity Formula	1: P(IAIA) = ((1 – P(F <i>I</i>	VIA))/(1 + C	I X MS X	TK x UR)	
FATAL Accident Probability, P(FAIA)	FORMULA CONSTANT CI	MAXIMUM TIMETABLE TRAIN SPEED	SW	TOTAL NUMBER OF TRACKS	TK	URBAN– RURAL CROSSING	UR
See Equation 3-3	4 . 280	,	1.000	0	1.000	0 (rural)	1.000
and Tables 3-10 & 3-12		ц	0.687	-	1.125	1 (urban)	1.202
		10	0.584	2	1.265		
	•	15	0.531	m	1.423		
		20	0.497	£	1.800		
		25	0.472	9	2.025		
		30	0.452	7	2.278		
		40	0.423	ω	2.562		
		50	0.401	6	2.882		
		60	0.385	10	3.241		
		70	0.371	15	5.836		
		80	0.360	20	10.507		
		90	0.350				
		100	0.341				

To obtain predicted numbers of fatal and injury accidents the fatal and injury accident probabilities, from Equations 3-3 and 3-4, are multiplied by predicted accidents from Equation 3-2. Hence, the formula for predicted fatal accidents at a crossing is:

FA = P(FAIA) x A(3-5)where: FA= predicted fatal accidents per yearP(FAIA) = predicted fatal accident probability from Equation 3-3A= predicted accidents per year from Equation 3-2

The formula for predicted injury accidents at a crossing is:

$$IA = P(IA|A) \times A \tag{3-6}$$

where: IA = predicted injury accidents per year P(IAIA) = predicted injury accident probability from Equation 3-4 A = predicted accidents per year from Equation 3-2

To illustrate characteristics of the fatal and injury accident probability formulas, the two functions P(FAIA) and P(IAIA) are plotted as a function of maximum timetable train speed in Figure 3-5. The figure contains five individual plots which show how the functions change when one of the other four factors which influence accident severity (thru trains, switch trains, tracks and urban-rural location) is varied. The values of the factors are shown on the individual plots.

Several observations can be made regarding the characteristics of the functions. The probability of a fatal accident given an accident P(FAIA) increases as a nearly linear function of timetable train speed. Changes in the number of thru and switch trains or the urban-rural location of the crossings does not have a major influence on fatal accident probability.

The probability of an injury accident given an accident P(IAIA) increases as a nonlinear function of timetable train speed. Injury accident probability generally increases rapidly with timetable train speed and then remains relatively constant beyond 40 mph. The function actually decreases at high speeds under certain conditions.

FIGURE 3-5. TYPICAL PLOTS OF PROBABILITY OF FATAL ACCIDENTS P(FAIA) AND PROBABILITY OF INJURY ACCIDENTS P(IAIA) AS A FUNCTION OF TIMETABLE TRAIN SPEED ms.

This is expected since, as accident severity increases, casualties will increasingly be fatalities rather than injuries. The number of tracks at the crossing has a significant influence on the function (injury accident probability decreases with the number of tracks); however, the urban-rural location has only a minor influence.

The extreme nonlinear nature of the injury accident probability formula presents problems with its use for resource allocation purpose. Since it does not consistently increase with actual accident severity, crossings with high actual severity could be ranked lower than crossings with lesser actual severity. Resource allocation priorities based on predicted injury accidents can therefore produce less than optimal results. For this reason, the preferred measure for resource allocation purposes is fatal accident probability by itself or combined with injury accident probability as described below to produce a combined casualty index.

3.3.3 Combined Casualty Index Formula

The severity of crossing accidents, measured by casualties, has two dimensions, injuries and fatalities. On a casualty severity scale those accidents of lower severity will tend to have more injuries while those of higher severity will tend to have more fatalities. The frequency distribution of accident severity tends to be the opposite; i.e., injury accidents tend to be more frequent than fatal accidents. Thus, a comprehensive indicator of total accident casualty impacts should take into account both the number and nature (i.e., injuries versus fatalities) of accident casualties. Using this approach, a crossing that has, for example, many injury accidents can be considered on the same scale as one with few fatal accidents. The combined casualty index (CCI) formula was developed to achieve this objective.

The CCI formula is a weighted sum of the predicted fatal and injury accident probabilities obtained from Equation 3-3 and 3-4, respectively. It is expressed as follows:

$$P(CCI) = K \times P(FAIA) + P(IAIA)$$
(3-7)

The CCI formula can be considered an "equivalent injury" accident probability function. It converts fatal accident to equivalent injury accident probability using the constant K and adds this value to the injury accident probability value. The user of the P(CCI) formula must specify a value for the constant K. This value indicates the relative impact of fatal versus injury accidents. The user is best qualified to determine the basis upon which an appropriate value of K is to be selected. A number of studies have been performed that are relevant to this topic. (Ref. 13 and 14) Based on results of accident costs in Reference 14 a default value of 50 for K was chosen for the DOT Procedure.

The probability value, P(CCI), obtained from Equation 3-7, must be multiplied by the accident prediction, from Equation 3-2, in a manner similar to the fatal and injury accident probability values, to yield the predicted CCI value for the crossing:

$$CCI = P(CCI) \times A$$
(3-8)

where: CCI = combined casualty index

P(CCI) = combined casualty index probability from Equation 3-7

A = predicted accidents per year from Equation 3-2.

.

.

.

4. RESOURCE ALLOCATION MODEL

4.1 INTRODUCTION

The resource allocation model was developed to assist state and railroad officials in the crossing safety improvement decision process. (Ref. 5) The procedure provides initial recommended lists of crossing improvements for consideration. These initial recommendations may be used by states to guide the on-site inspection of crossings by diagnostic teams. Revised results based on information obtained by the diagnostic teams provides a useful set of recommendations upon which state and railroad officials can finalize crossing safety improvement plans.

The resource allocation model can provide safety improvement recommendations for two general categories of motorist warning devices upgrades: (1) active warning devices (i.e., flashing lights and gates) and (2) standard highway stop signs. The user of the resource allocation model has the option of selecting either or both sets of recommendations. Descriptions of the resource allocation model for active warning devices and stop signs are provided below in Sections 4.2 and 4.3, respectively.

4.2 RESOURCE ALLOCATION MODEL FOR ACTIVE WARNING DEVICES

4.2.1 Overview

The resource allocation model for active warning devices provides a list of crossings with recommended warning device improvements. The recommendations are based on achieving the greatest accident or casualty reduction for the available budget, given the cost and safety effectiveness of the active warning device options.

Input to the resource allocation model includes predicted accidents or casualties for the crossings being considered, costs and effectiveness of the different safety improvement options (e.g., flashing lights and gates), and the budget level available for safety improvement. Accident or casualty predictions for crossings can come from any

Preceding page blank

prediction formula which computes number of accidents or casualties per year. The DOT accident and casualty prediction formula described in the previous section were developed for this purpose.

Cost data for the warning device options may include total life cycle costs (the sum of procurement, installation, and maintenance), or the costs associated with only a particular phase of a project. These costs are needed for the following categories of active warning device improvements currently considered by the model: flashing lights for a previously passive crossing, gates for a previously passive crossing, and gates at a crossing previously equipped with flashing lights. Cost data on warning device improvements which can be used for the resource allocation model are presented in Section 4.2.4.

Hgier Vefv

Sector Sec.

Warning device effectiveness required by the resource allocation model is defined as the decimal fraction by which accidents are expected to be reduced by installation of a warning device. Effectiveness is a relative measure involving both existing and proposed warning systems at a crossing to be upgraded. If automatic gates have an effectiveness of 0.83, when installed at a crossing with a passive warning device, the accident rate at the crossing will be reduced by 83 percent. Automatic gates installed at a crossing with flashing lights would have a lower effectiveness. An improvement which completely eliminates accidents, such as grade separations or closures, would have an effectiveness of 1.0; i.e., it is 100 percent effective. Values of effectiveness for different active warning device improvement combinations are presented in Section 4.2.5.

The budget level for crossing improvements, used as input to the resource allocation model, should include the total multi-year funding available, even though it may exceed a single year's budget. The reason for this is that the resource allocation model will produce a different and possibly conflicting set of decisions depending upon the budget level used. If, for example, the first-year budget of a 2-year program is used, a specific set of decisions will result from the model. Use of the model again for the next year's budget, incorporating the crossing improvements made the previous year, will result in a new set of decisions. Some of the new decisions may involve further

improvements to crossings just upgraded the previous year, resulting in an inefficient program. The best approach would have been to use the total 2-year budget for the first application of the model, and then fund the improvement decisions over a 2-year period.

The resource allocation model is intended to assist state and railroad planners in formulating decisions on crossing improvements. There are a number of applications where the model can be useful in this role. In its primary application, the model could use the state listing of crossings, ranked by predicted accidents or casualties, to produce a list of suggested improvement projects. The project list indicates which crossings are to be upgraded and the type of upgrade to be performed. The state can then use this suggested program as a basis to select crossings for on-site inspections by diagnostic teams. The diagnostic teams can validate original data used by the model, revise the suggested program if data has changed and obtain additional information on potential crossing hazards for consideration prior to finalizing program plans. A procedure for accomplishing this evaluation process is described in Section 4.2.6.

The resource allocation model can also be used to assess the sensitivity of improvement decisions to variations in the input parameters of warning device cost and effectiveness and predicted crossing accidents. If, for a given crossing or set of crossings, these parameters are known to be different than originally assumed, the new values can be substituted into the model and new results obtained. The effect of the new parameters can be assessed by a comparison of new improvement decisions with those resulting from the previous assumptions. This type of application is useful in evaluating the impacts of known or proposed changes in crossing characteristics, such as increases in train or highway traffic on certain routes, or closures of specific crossings.

The resource allocation model is also useful for evaluating the impacts of alternative program strategies. The model can be easily modified to incorporate constraints imposed on certain improvement actions by state warrants or guidelines. An example of such a constraint would be a gates-only policy at crossings with train speeds exceeding certain values. Variations in program budgeting such as inclusion versus exclusion of warning device maintenance costs and single-year versus multi-year funding limits, can also be evaluated with the resource allocation model.

4.2.2 Description of Model Algorithm

Three categories of warning device classes are considered by the resource allocation algorithm, and are the same categories evaluated by the accident prediction formulas. Warning device classes 1 through 4 are grouped together and called "passive" warning systems, meaning that they are not train-activated devices. Classes 5, 6, and 7 are grouped together and called "flashing lights," since public crossings which are equipped with flashing lights predominate in this category. Class 8 remains as a separate warning device category called "gates".

Table 4-1 is a matrix showing the effectiveness and cost symbols for the three warning device groupings used in describing the resource allocation algorithm. The matrix reflects the possible combinations of active warning device improvements currently considered by the model. For passive crossings, single track, two upgrade options exist, flashing lights or gates. For passive, multiple-track crossings, the model allows only the gate option to be considered in accordance with Federal regulations.* For flashing light crossings, the only improvement option is gates. The model can be modified by extending the basic logic to include other options, however, it would also be necessary to determine the costs and effectiveness of any additional options that are considered.

For each combination of existing and proposed warning device, a pair of parameters (E_j, C_j) , as shown in Table 4-1, must be provided for the resource allocation algorithm, where j = 1 for flashing lights installed at a passive crossing, j = 2 for gates installed at

*23 CFR 646.214(b)(3)(i)

		PROPOS	SED WARNING E	DEVICE	– –
		FLASHING LIGH	ITS	AUTOMATIC C	ATES
EXISTING DEVICE	WARNING	EQUIPMENT EFFECTIVENESS	EQUIPMENT COST	EQUIPMENT EFFECTIVENESS	EQUIPMENT COST
Passive		E ₁	C ₁	E ₂	C ₂
Flashing	Lights	-	—	E ₃	c ₃

TABLE 4-1. EFFECTIVENESS/COST SYMBOL MATRIX

a passive crossing, and j = 3 for gates installed at a crossing with flashing lights. The first parameter (E_j) is the effectiveness of installing the proposed warning device at the crossing. The second parameter (C_j) is the corresponding cost of the proposed warning device.

The resource allocation model considers all crossings with either passive or flashing light warning devices as candidates for improvements. If, for example, a single-track passive crossing, i, is considered, it could be upgraded with either flashing lights, with an effectiveness E1, or gates, with an effectiveness of E2. The number of predicted accidents or casualties at crossing i is AC;; hence, the reduced accidents or casualties per year is AC_iE_1 for the flashing light option and AC_iE_2 for the gate option. The corresponding costs for these two improvements are C_1 and C_2 . The accident or casualty reduction/cost ratios for these improvements are AC_iE_1/C_1 for flashing lights and AC_iE_2/C_2 for gates. The rate of increase in accident or casualty reduction versus costs that results from changing an initial decision to install flashing lights with a decision to install gates, at crossing i, is referred to as the incremental accident or casualty reduction/cost ratio and is equal to $AC_1(E_2-E_1)/(C_2-C_1)$. The incremental accident or casualty reduction/cost ratio is used by the algorithm to compare the costeffectiveness of a decision to further upgrade a passive crossing from flashing lights to gates with an alternative decision to upgrade another crossing instead. If a passive multiple-track crossing, i, is considered, the only improvement option allowable would be installation of gates, with an effectiveness of E2, a cost of C2 and an accident or

casualty reduction/cost ratio of $AC_i E_2/C_2$. If crossing i was originally a flashing light crossing, the only improvement option available would be installation of gates, with an effectiveness of E₃, a cost of C₃ and an accident or casualty reduction/cost ratio of AC_iE_3/C_3 .

The resource allocation algorithm systematically computes the accident or casualty reduction/cost ratios, including incrementals, of all allowable improvement options for all crossings under consideration. The individual accident or casualty reduction/cost ratios are then sorted and selected by the algorithm so that the associated improvements result in the maximum accident or casualty reduction obtainable for the available budget. The total cost of the improvements is the sum of the individual project costs (C_1 , C_2 and C_3). The total accident or casualty reduction is the sum of the individual accident or casualty reduction so the form AC_iE_i .

A flow diagram describing the logic of the resource allocation algorithm is shown in Figure 4-1. The input to this program consists of the set of crossings for which the model is to apply, the accidents or casualties predicted per year for these crossings, the warning device parameters (E_1 , E_2 , E_3 , C_1 , C_2 , C_3) and the available budget (CMAX). It should be noted that more than one value for each of the six effectiveness and cost parameters can be provided to the algorithm. Thus, for example, several values of E, can be used to account for different crossing situations. Multiple effectiveness values for each type of upgrade, currently available for the algorithm, are discussed in more detail in Section 4.2.5.

The algorithm, described in Figure 4-1, proceeds according to the following steps in computing optimal resource allocations.

Step 1: The reasonable assumption is made for the algorithm that $E_2 > E_1$ and $C_2 > C_1$. This assumes that gates are more effective at passive crossings than flashing lights and that gates cost more. However, the effectiveness/cost ratio for flashing lights (E_1/C_1) could be greater or less than that for gates (E_2/C_2) . If $E_1/C_1 > E_2/C_1$, the algorithm computes incremental accident or casualty reduction/cost ratios for all allowable improvements at each crossing according to the procedure outlined in step 2A below. Step 2A is based on the assumption that flashing lights have a greater effectiveness/cost ratio than gates. If the opposite is true -- that gates have an

FIGURE 4-1. RESOURCE ALLOCATION ALGORITHM

effectiveness/cost ratio equal to or greater than flashing lights $(E_1/C_1 \le E_2/C_2)$ -- then step 2B is followed for computing the improvement accident or casualty reduction/cost ratios. Step 2B assumes that gates will always be installed at passive crossings.

Step 2A: In step 2A, two accident or casualty reduction/cost ratios are calculated for each single-track passive crossing, AC_iE_1/C_1 and the incremental ratio AC_i (E_2 - E_1)/(C_2 - C_1), where AC_i is the number of accidents or casualties predicted per year for the crossing. These two ratios correspond to the two actions available for single-track passive crossings, either to install flashing lights or a revised decision to install gates. For multiple-track passive crossings, only the accident or casualty reduction/cost ratio for installation of gates is calculated (AC_iE_2/C_2), to conform with Federal regulations. For each crossing equipped with flashing lights, the algorithm computes AC_iE_3/C_3 , corresponding to an upgrading from flashing lights to gates. The accident or casualty reduction/cost ratio is represented in units of accidents or casualties prevented per year per dollar.

Step 2B: The algorithm computes the accident or casualty reduction/cost ratio AC_iE_2/C_2 for passive crossings and the ratio AC_iE_3/C_3 for crossings with flashing lights. These accident or casualty reduction/cost ratios are associated with installing only gates at crossings. For the step 2B case, these actions are always optimal to the alternative of installing flashing lights, since the accident or casualty reduction/cost ratio and the absolute cost of gates are greater than for flashing lights.

Step 3: Regardless of whether step 2A or 2B is followed, all of the accident or casualty reduction/cost ratios calculated by the algorithm are ranked with the largest first. The list of accident or casualty reduction/cost ratios represents a sequence of optimal decisions starting with the top of the list.

Step 4: This step consists of a series of iterations, where the algorithm progresses down the list of ranked accident or casualty reduction/cost ratios. This process is equivalent to making the optimum decision of achieving the maximum accident or casualty reduction for each additional increment in cost incurred. If the accident or casualty reduction/cost ratio at any given step on the list is calculated as AC_iE_1/C_1 , a decision is made to install flashing lights at a passive crossing, with an accident or casualty reduction of AC_iE_1 and cost of C_1 . If the accident or casualty reduction/cost

ratio is $AC_i (E_2-E_1)/(C_2-C_1)$, a previous decision to install flashing lights is changed to installation of gates at a passive crossing. The incremental accident or casualty reduction of changing the previous decision is $AC_i(E_2-E_1)$, and the incremental cost is C_2 - C_1 . If the accident or casualty reduction/cost ratio is AC_iE_2/C_2 , then a decision is made to install gates at a passive crossing without prior consideration of flashing lights. The accident or casualty reduction is AC_iE_2 at a cost of C_2 . If the accident or casualty reduction is AC_iE_3/C_3 , then a decision is made to install gates at a cost of C_3 . The total accident or casualty reduction at each step is the sum of the previous accident or casualty reductions, and the total cost is the sum of the previous costs.

In addition to determining the total accident or casualty reduction and cost at each step, the algorithm also determines the particular warning systems which are to be installed at particular crossings. Since the crossings which were affected are known, the actual accidents or casualties, location, and all other information in The Inventory for those crossings, are also known. Thus, the output of the program could include any of this information and any computations based on this information. Several types of output are shown in Section 5.2.

Step 5: The cumulative total cost at each step, proceeding down the list of accident or casualty reduction/costs ratios, is compared with the available budget specified as input to the algorithm. When the total cost equals or exceeds the budget, the program ends. Otherwise, the sequential procedure described in step 4 continues.

4.2.3 Demonstration of Model Algorithm

To demonstrate operation of the algorithm, an example which considers the three crossings described in Table 4-2 follows. For this example predicted accidents, A_i , rather than predicted casualties will be used as the measure of crossing hazard. The predicted accidents per year and current warning device information for the crossings together with assumed warning device cost and effectiveness parameters, presented in Table 4-3, constitute the input data for the algorithm.

CROSSING	CURRENT WARNING DEVICE	PREDICTED ACCIDENTS PER YEAR A ₁
X ₁ (single track)	Passive	$A_1 = 0.3$
X2	Flashing Lights	$A_2 = 0.2$
x ₃	Flashing Lights	A ₃ = 0.1

TABLE 4-2. SAMPLE CROSSINGS FOR ALGORITHM DEMONSTRATION

TABLE 4-3. EFFECTIVENESS/COST INPUT DATA

	PROPOS	SED WARNING DEVI	CE	-
	FLASHING LIGH	ITS	AUTOMATIC	GATES
EXISTING WARNING DEVICE	EQUIPMENT EFFECTIVENESS	EQUIPMENT COST	EQUIPMENT EFFECTIVENESS	EQUIPMENT COST
Passive	$E_1 = 0.7$	C ₁ = \$25,000	$E_2 = 0.9$	C ₂ = \$45,000
Flashing Lights			$E_3 = 0.667$	C ₃ = \$35,000

The algorithm proceeds through the following steps which were described in the previous section and in Figure 4-1.

Step 1: The effectiveness/cost ratio for flashing lights (E_1/C_1) is greater than that for gates (E_2/C_2) ; hence, the algorithm follows step 2A. (See Figure 4-1) This implies that the most effective first action which can be taken at a passive crossing is the installation of flashing lights.

Step 2A: The crossings are selected for analysis by the algorithm in the order they appear in Table 4–2. For each crossing selected, the appropriate accident reduction/cost ratios are calculated, corresponding to all the allowable warning device improvements which may be made. The results of these calculations are shown in Table 4–4.

Step 3: The accident reduction/cost ratios, as calculated in step 2A, are ranked in descending order, beginning with the largest. The warning device improvement action at each crossing, represented by the ratios and corresponding cumulative accident reduction and cost, are tabulated in Table 4-5.

Step 4: From the ranked list in Table 4-5, the first action selected by the algorithm corresponds to the first ranked accident reduction/cost ratio: installation of flashing lights at crossing X_1 with a cost of \$25,000. The next action selected by the algorithm corresponds to the next ranked accident reduction/cost ratio: installation of gates at crossing X_2 , resulting in a cumulative cost of \$60,000 for the first two projects. The algorithm proceeds in this manner until the cumulative total cost of all improvement actions equals the available budget (CMAX). It should be noted that the third action selected by the algorithm does not involve an additional crossing, but revises an earlier decision to install gates rather than flashing lights at crossing X_1 . This type of revision is typical of the algorithm for normal applications, as additional funding is made available. For the above example, if a total of \$115,000 were available for improvements (CMAX = \$115,000), the algorithm would proceed through the fourth item on the list involving crossing X_3 . The overall improvement actions for \$115,000 would result in the installation of gates at all three crossings.

35,000 3.8 x 10-6 0.667 35,000 0.667 = 1.9 x 10⁻⁶ INSTALL GATES AT FLASHING ភាភ AR/C = 0.2AR/C = 0.1 $AR/C = A_{1}$ CROSSING I n ł LIGHT I ł I. ſ $\frac{0.9 - 0.7}{45,000 - 25,000}$ I I I I 3.0 × 10-6 I TO GATES AT PASSIVE CROSSING: - E1 - C1 - IMPROVEMENT OPTIONS -FROM INSTALLING REVISE DECISION FLASHING LIGHTS E2 N AR/C = 0.3AR/C = Aп 8.4 × 10-6 25,000 FLASHING LIGHTS I Ш Ц 5 t AT PASSIVE CROSSING: AR/C = 0.3ŧ $AR/C = A_{i}$ I INSTALL ji ſ I I ł I Passive, Single frack I t Flashing Lights Flashing Lights CURRENT WARNING DEVICE CROSSING Y. ХZ хз

TABLE 4-4. STEP 2: CALCULATION OF ACCIDENT REDUCTION/COST RATIOS

			EjAi	$\Sigma \mathbf{E_jA_i}$	Σcj
RANK	ACCIDENT REDUCTION/COST RATIO	WARNING DEVICE IMPROVEMENT ACTION	ACCIDENTS REDUCED PER YEAR	CUMULATIVE ACCIDENTS REDUCED PER YEAR	CUMULATIVE COSTS
1	8.4 x 10-6	Install Flashing Lights at Crossing X ₁	0.21	0.21	\$25,000
2	3.8 x 10 ⁻⁶	Install Gates at Crossing X ₂	0.13	0.34	\$60,000
3	3.0 x 10 ⁻⁶	Install Gates at Crossing X ₁	0.06	0.40	\$80,000
4	1.9 x 10-6	Install Gates at Crossing X ₃	0.07	0.47	\$115,000

TABLE 4-5. STEP 3: RANKING OF ACCIDENT REDUCTION/COST RATIOS

4.2.4 Active Warning Device Cost Data

As described above, the resource allocation model requires data on the costs of the warning device improvement options. A study has been performed to determine average national values for these costs. (Ref. 6) The costs determined include the initial installation costs (including procurement) and the net present value (NPV) maintenance costs over the life of the equipment which are added together to yield the total life cycle cost. These costs were originally determined in 1977 dollars. An additional study was performed by the Association of American Railroads (AAR) in 1982 to determine the annual maintenance costs of warning devices.(Ref. 7) The AAR study results for maintenance costs were combined with the earlier study results for installation costs and updated to 1983 dollars using the procedure outlined below. These 1983 warning device costs are presented in Table 4-6.

IMPROVEMENT OPTION	INSTALLATION COST	NPV MAINTENANCE COST	NPV LIFE CYCLE COST
Passive to Flashing Lights, C1	\$43,800	\$10,700	\$54,500
Passive to Gates, C ₂	\$65,300	\$18,700	\$84,000
Flashing Lights to Gates, C ₃	\$58,700	\$18,700	\$77,400

TABLE 4-6. WARNING DEVICE IMPROVEMENT COSTS, 1983

The category of costs that are used as input to the resource allocation model (installation, maintenance, life cycle or some combination of these) can be determined at the discretion of the user. Installation costs reflect the immediate costs to the state and Federal Government of completing the project. Maintenance costs are the long term recurring costs of the project, usually to the railroads; however, some states share in these costs. Total life cycle costs reflect the project's total cost over its useful life.

Since the costs shown in Table 4-6 have been inflating, a procedure has been developed to produce multipliers for the installation and maintenance costs that will increase their amounts to current dollars. The procedure uses the annual index of charge-out prices and wage rates from the AAR. (Ref. 8)

The inflation multiplier for installation costs (MI) is determined from the average increase in the "Materials and Supplies" index, (MS) and the "Wage Rate" index (WR) from the year for which the latest cost information is available. The 1983 values for the MS and WR indexes are 140 and 179 respectively. The multiplier for installation costs, MI, for some future year beyond 1983 is therefore:

$$MI = \frac{(MS/140 + WR/179)}{2}$$
 (4-1)
where

MI = inflation multiplier for installation costs
 MS = materials and supplies index for the current year
 WR = wage rate index for the current year

The inflation multiplier for maintenance costs (MM) is a weighted average of 95 percent of the installation cost multiplier MI, (determined from equation 4-1 above) and 5 percent of the increase in the "Fuel" index (F) from the year for which the latest cost information is available. The 1983 value of the F index is 232. The multiplier for maintenance costs, MM, for some future year beyond 1983 is therefore:

 $MM = MI \ge 0.95 + (F/232) \ge 0.05$ (4-2) where

MM = inflation multiplier for maintenance costs F = fuel index for the current year

The cost values shown in Table 4-6 are national averages, and their use will produce decisions by the resource allocation model useful in formulating improvement programs. The study to determine these costs (Ref. 6) did not reveal any significant shifts in costs by region of the country, although some variation by railroad was observed. If other values for the average costs of improvements are available and are thought to more accurately reflect the application in question, these values may be substituted for those suggested here.

Use of average costs introduces the simplification of not accounting for the actual variation in costs that can occur from one project to another. Average values assume, for example, that all passive crossings upgraded to gates will cost the same. If the user can determine more accurately the actual variation in costs for improvement options on all crossings being considered, these costs could be used. To do so, however, will require modification of the model program to permit cost data to be input on an individual crossing basis. The model program currently accepts only the three cost values (C_1, C_2, C_3) as input.

Caution should be exercised in adjusting the costs of a few selected projects while assigning average costs to all other projects. If this is done, decisions regarding the adjusted crossings may be unreasonably biased by the algorithm. The effect on individual crossing decisions of changes in a crossing's cost characteristics from the average values can be determined manually, using a procedure described in Section 4.2.6. With this procedure, all other decisions by the algorithm will remain constant, while it can be determined if the decision regarding the crossing in question will change with the new cost values.

4.2.5 Active Warning Device Effectiveness Data

Three investigations have been performed to determine the effectiveness of warning devices in reducing accidents at rail-highway crossings. The most recent study performed by the U.S. Department of Transportation, used information in The Inventory and the FRA accident reporting system. (Ref. 9) This study compared the accident rates at crossings both before and after warning device improvements had been made to determine their effectiveness during the period from 1975 to 1980. A similar study, also performed for the U.S. Department of Transportation used the same information sources for the years 1975 to 1978. (Ref. 10) A third study was performed in 1974 by the California Public Utilities Commission. (Ref. 11) This study examined accident rates before and after upgrades at 1552 California crossings over the period from 1960 to 1970. The results of these three studies are shown in Table 4-7 in terms of single "standard" effectiveness values (E_1 , E_2 and E_3) for the three improvement options considered by the resource allocation model.

WARNING DEVICE IMPROVEMENT OPTION	2nd DOT STUDY, 1975 to 1980 DATA	1st DOT STUDY, 1975 to 1978 DATA	CALIFORNIA STUDY, 1960 to 1970 DATA
Passive to Flashing Lights, E1	0.70	0.65	0.64
Passive to Gates, E ₂	0.83	0.84	0.88
Flashing Lights to Gates, E ₃	0.69	0.64	0.66

4-7. STANDARD SET OF EFFECTIVENESS VALUES FOR WARNING DEVICE IMPROVEMENTS

The effectiveness values resulting from the three studies are similar but differences exist. These differences are probably a reflection of variations in crossing characteristics over time and regions of the country. The question arises as to which set of values to use for the resource allocation model. As with the cost data, any set of values which the user feels accurately reflect the situation being evaluated may be used. Without other information to the contrary, the effectiveness values from the latest DOT study are recommended, since they were most recently developed, and used the largest data base of national scope.

The latest DOT study on warning device effectiveness determined that several crossing characteristics, out of many investigated, had a significant influence on warning device effectiveness. Specifically, it was found that the effectiveness of warning device upgrades was less for crossings with multiple tracks and crossings with greater than 10 trains per day. These results were used to develop an "extended" set of effectiveness values shown in Table 4-8. At the option of the user, the resource allocation model has the capability to use either the extended set of values or the reduced set of standard values shown in Table 4-7. Unless otherwise specified by the user, the resource allocation model uses the extended set of values since their use results in improved performance of the model.

WARNING	NUMBER OF TRACKS:	SINGLE	SINGLE	MULTIPLE	MULTIPLE
IMPROVEMENT OPTION	NUMBER OF TRAINS/DAY:	<u><</u> 10	>10	<u><</u> 10	> 10
Passive to Flashing Lights, E ₁		0.75	0.61	0.65	0.57
Passive to Gates, E ₂		0.90	0.80	0.86	0.78
Flashing Lights to Gates, E ₃		0.89	0.69	0.65	0.63

TABLE 4-8. EXTENDED SET OF EFFECTIVENESS VALUES FOR WARNING DEVICE IMPROVEMENTS

4.2.6 Field Verification and Revision of Resource Allocation Results

Crossings selected for improvements by the resource allocation model should be inspected by a diagnostic team to determine the accuracy of input data and the reasonableness of the recommended improvement. The inspection may show that data from The Inventory are not correct, resulting in an inaccurate predicted accident or casualty rate. Also, the assumed warning device effectiveness and cost may be found inappropriate for the particular crossing. In addition, the diagnostic team should make note of hazardous conditions at crossings, such as limited sight distance or hazardous materials traffic, that are not included in the resource allocation model but should be considered before making a final decision. A manual procedure has been developed to evaluate the impact of changes in crossing data on the improvement decision made by the resource allocation model. This procedure can be performed without rerunning the model and is incorporated in a worksheet, shown in Figure 4–2. The worksheet, guides the diagnostic team through the on-site evaluation procedure using a five-step set of instructions.

RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE VERIFICATION WORKSHEET

This worksheet provides a format and instructions for use in field evaluation of crossings to determine if initial recommendations for warning device installations from the Resource Allocation Procedure should be revised. Steps 1 through 5, described below, should be followed in making the determination. In Steps 1 and 3, the initial information (left column) is obtained from office inventory data prior to the field inspection. In Step 4, the decision criteria values are obtained from the Resource Allocation Model printout.

STEP 1: VALIDATE DATA USED IN CALCULATING PREDICTED ACCIDENTS.

CHOSSING CHARACTERISTICS	INITIAL INFORMATION	REVISED INFORMATION
Crossing Number		
Location		
Existing Warning Device		
Total Trains Per Day (t)		<u> </u>
Annual Average Daily Highway Traffic (c)		
Total Switch Trains Per Day (ts)		·····
Day Thru Trains (d)		
Total Thru Trains Per Day (tt)		·
Number Of Main Tracks (mt)		
Total Number Of Tracks (tk)		
Is Highway Paved? (hp)		
Maximum Timetable Speed, mph (ms)		
Highway Type (ht)		
Number Of Highway Lanes (hl)		
Urban-Rural Location (ur)		
Number Of Years Of Accident History (T)		
Number Of Accidents In T Years (N)		
Predicted Accident Or Casulaty Rate (AC)		

STEP 2: CALCULATE REVISED ACCIDENT OR CASUALTY PREDICTION FROM DOT FORMULA IF ANY DATA IN STEP 1 HAS BEEN REVISED.

Revised Predicted Accidents or Casulaties (AC) = _____

STEP 3: VALIDATE COST AND EFFECTIVENESS DATA FOR RECOMMENDED WARNING DEVICE.

	INITIAL INFORMATION	REVISED INFORMATION
Assumed Effectivness Of Recommended Warning Device (E)		
Assumed Cost Of Recommended Warning Device (C)		<u></u>
Recommended Warning Device Installation		

FIGURE 4-2. "FIELD VERIFICATION WORKSHEET"

STEP 4: DETERMINE IF RECOMMENDED WARNING DEVICE IS REVISED IF AC, E OR C HAS CHANGED.

Instructions for Determining If Recommended Warning Device Should Be Revised

1. Obtain Decision Criteria Values From Resource Allocation Model Output:

 $DC_1 = ____ DC_2 = ___ DC_3 = ___ DC_4 = ____ DC_4 = ____ DC_4 = ____ DC_4 = ___ DC_4 = ____ DC_4 = _____ DC_4 = ______ DC_4 = ______DC_4 = ______DC_4 = _____DC_4 = ____DC_4 = ___DC_4 = __DC_4 = ___DC_4 = ___DC_4 = ___DC_4$

2. Calculate: $R = \frac{Revised AC}{Previous AC} \times \frac{Revised E}{Previous E} \times \frac{Previous C}{Revised C}$

3. Compare R with Appropriate Decision Criteria as Shown Below:

3a. Existing Pas (Classes 1, Single Tra	ssive Crossing 2, 3, 4) ack	3b. Existing (Classes Multip	g Passive Crossing a 1, 2, 3, 4) ble Tracks	3c. Existing Flag (Clag	shing Light Crossing sses 5, 6, 7)
Comparison	Decision	Comparison	Decision	<u>Comparison</u>	Decision
DC ₂ ≤ R	Gates	$DC_3 \leq R$	Gates	$DC_{4} \leq R$	Gates
$DC_1 \stackrel{<}{=} R < DC_2$	Flashing Lights	$R \leq DC_3$	No Installation	R < DC4	No Installation

R < DC1 No Installation

4. Revised Recommended Warning Device Installation: # ____

STEP 5: DETERMINE OTHER CROSSING CHARACTERISTICS THAT MAY INFLUENCE WARNING DEVICE INSTALLATION DECISIONS.

Multiple tracks where one train/locomotive may obscure vision of another train?	
Percent trucks	
Passenger train operations over crossing?	
High speed trains with limited sight distance?**	
Combination of High Speeds and moderately high volumes of highway and rail traffic?**	
Either, or any combination of, high vehicular traffic volumes, high numbers of train movements, substantial numbers of school buses or trucks carrying hazardous materials, unusually restricted sight distance or continuing accident occurrences?**	

*The cost and effectiveness values for the revised warning device are assumed to change by an amount proportional to the change in these values for the initial recommended warning device as determined in Step 3.

*Gates with flashing lights are the only recommended warning device per 23CFR 646.214(b)(3)(1).

FIGURE 4-2. "FIELD VERIFICATION WORKSHEET" (Cont.)

Steps 1, and 2 of the worksheet involve validating crossing characteristics data, and recalculating the predicted accidents or casualties if any of the data is revised. Step 3 validates the cost and effectiveness assumptions for the recommended warning device. As a result of completing steps 1, 2 and 3, three basic inputs to the resource allocation model may have changed: (1) number of predicted accidents or casualties (AC); (2) warning device effectiveness (E); and (3) warning device cost (C). Step 4 of the worksheet describes the procedure for determining if any input changes will affect the improvement decision. This procedure requires the computation of the parameter (R) using the formula below and described in part 2 of step 4:

 $R = \frac{\text{Revised AC}}{\text{Previous AC}} \times \frac{\text{Revised E}}{\text{Previous E}} \times \frac{\text{Previous C}}{\text{Revised C}}$ (4-3)

The value of R is the ratio of the revised to previous accident or casualty reduction/cost ratio, for the original recommended improvement action. The R value is then compared with the appropriate decision criteria values (DC_1 , DC_2 , DC_3 , and DC_4) as described within part 3 of step 4 on the worksheet. The decision criteria values are obtained from the standard output report (see Figure 5-4) of the resource allocation model. The result of this comparison will determine if the original recommended improvement should be revised.

The decision criteria values are computed by the standard program of the resource allocation model for each crossing considered (see Section 5.2 for description of programs). The formula for computing the four decision criteria are shown below:

$$DC_1 = (ACR/C_m)/(A_i(E_1/C_1))$$
 (4-4)

$$DC_{2} = (ACR/C_{m})/(A_{i}(E_{2}-E_{1})/(C_{2}-C_{1}))$$
(4-5)

$$DC_3 = (ACR/C_m)/(A_i(E_2/C_2))$$
 (4-6)

 $DC_4 = (ACR/C_m)/(A_i(E_3/C_3))$ (4-7)

where

 ACR/C_m = the minimum accident or casualty reduction/cost ratio corresponding to the last (lowest) improvement action selected by the resource allocation model.

The decision criteria represent the amount by which the accident or casualty reduction/cost ratio for a particular improvement action can be changed and still be selected by the model. The improvement actions corresponding to the decision criteria $(DC_1, DC_2, DC_3 \text{ and } DC_4)$ are, respectively, single-track passive to flashing lights, single-track passive to gates, multiple-track passive to gates, and flashing lights to gates. Comparing the R value to the decision criteria is equivalent to determining if the actual change in accident or casualty reduction/cost ratio due to revised data is still within the limits permitting selection of the same improvement action.

To demonstrate use of the revision procedure, the following example is provided. A single-track passive crossing was selected by the resource allocation model for upgrading to gates. This crossing is listed as the 9th crossing (ID# 000120R) on the sample standard output report of the resource allocation model shown in Figure 5-4. The crossing was inspected by a diagnostic team, and it was found that some of the data from The Inventory used in calculating the predicted accidents were incorrect. In addition, the assumed values for the installation costs and effectiveness of gates at the crossing were deemed inappropriate. Using the new data, a revised prediction of accidents was calculated according to the tabularized procedure described in Section 5.1.1. The previous and revised accident prediction, cost, and effectiveness parameters for the crossing are listed below:

	Previous	Revised
Predicted Accidents, A	0.40	0.50
Warning Device Effectiveness, E	0.80	0.90
Warning Device Cost, C	\$65,300	\$115,000
Using the above data, the R value is calculated using equation 4-3 (also shown on the worksheet, step 4, part 2):

R = (.50/.40) (.90/.80)(65,300/115,000)

= 0.799

The decision criteria for this crossing, obtained from the standard output report of the resource allocation model, Figure 5-4, are:

 $DC_1 = 0.352$ $DC_2 = 0.864$ $DC_3 = not$ computed since the crossing is single track $DC_4 = not$ computed since the crossing is passive

Comparing R with the decision criteria values, as described in step 4, part 3a of the worksheet, shows that R is greater than DC_1 , but less than DC_2 . This means that the original decision to install gates at this crossing should be revised to install flashing lights as the most cost-effective decision if the new data for the crossing are assumed correct.

4.3 RESOURCE ALLOCATION MODEL FOR STANDARD HIGHWAY STOP SIGNS

The most recent DOT study on warning device effectiveness (Ref. 9) determined that standard highway stop signs may be effective in reducing crossing accidents. The average level of effectiveness for upgrades to standard highway stop signs from other passive devices was found to be 0.35 (95 percent confidence interval, 0.16, to 0.54). This level of effectiveness coupled with their low cost (\$400 installation or \$800 total 30-year life cycle cost, including "stop ahead" signs, for a two-stop sign installation) make standard highway stop signs worthy of consideration for certain crossing situations needing improvement where funding is not available for active warning devices (Ref. 9). The FHWA has established the following guidelines for the selection of candidate crossings for stop signs (Ref. 2, 12): The use of the stop signs at railroad-highway grade crossings shall be limited to those grade crossings selected after need is established by a detailed traffic engineering study. Such crossings should have the following characteristics:

- 1. Highway should be secondary in character with low traffic counts.
- 2. Train traffic should be substantial.
- 3. Line of sight to an approaching train is restricted by physical features such that approaching traffic is required to reduce speed to 10 miles per hour or less in order to stop safely.
- 4. At the stop bar, there must be sufficient sight distance down the track to afford ample time for a vehicle to cross the track before the arrival of the train.

The engineering study may determine other compelling reasons for the need to install a stop sign, however, this should only be an interim measure until active traffic control devices can be installed. Stop signs shall not be used on primary through highways or at grade crossings with active traffic control devices.

Whenever a stop sign is installed at a grade crossing, a stop ahead shall be installed in advance of the stop sign.

The resource allocation model provides, at the option of the user, a list of crossings that are possible candidates for standard highway stop signs. This list is produced by selecting from the passive crossings under consideration those with less than 400 average daily traffic (ADT) counts for rural roads and less than 1500 ADT counts for urban roads, greater than 10 trains per day and single tracks. The crossings on the list are ranked by the accident or casualty prediction measure selected by the user. Unlike the resource allocation model results for active warning devices the stop sign list is not ranked by accident or casualty reduction/cost ratios. The reason for this is twofold: (1) based on presently available information it is assumed that all stop sign upgrades have the same cost and effectiveness; hence, a ranking by accident or casualty reduction/cost ratio would be the same as that by accident or casualty prediction and (2) since the number of crossings that are realistic candidates for stop signs are so few and their costs are so low, stop sign installation decisions will be made primarily on factors other than their accidents or casualty reduction/cost ratios relative to active warning device projects.

The stop sign candidate report can be produced either with or without the report of active warning device recommendations. If the resource allocation procedure is used to produce both reports, it is possible that the same crossing could appear on both lists; i.e., a crossing that is a possible candidate for stop signs may also be a candidate for an active warning device. To provide a means of integrating this information, the report on active warning device recommendations will indicate, at the option of the user, if a crossing is also a possible candidate for stop signs.

5. APPLICATION OF DOT RESOURCE ALLOCATION PROCEDURE

5.1 DOT ACCIDENT AND CASUALTY PREDICTION FORMULAS

5.1.1 Manual Calculation of Predicted Accidents and Casualties

If the number of predicted accidents or casualties is required for a few crossings, a convenient manual procedure can be used, employing the formula tables presented in Sections 3.2 and 3.3. Manual use of the DOT accident and casualty prediction formulas is illustrated in the following example. Characteristics of the sample crossing for which the number of predicted accidents and casualties is to be determined are shown in Table 5-1.

CHARACTERISTIC	VALUE
Ducant unuing doutes	Creashualus
Present warning device	Crossbucks
Annual average daily highway traffic	350
Total number of trains movements per day	15
Total number of thru trains per day	10
Total number of switch trains per day	5
Number of main tracks	2
Total number of tracks (main and other)	2
Number of thru trains per day during daylight	t 5
Highway paved?	yes
Maximum timetable speed, mph	40
Highway type	Rural minor arterial (06)
Number of highway lanes	2
Urban - rural location	Rural
Number of years accident data, T	ц
Number of accidents, N, in T years	2

TABLE 5-1. CHARACTERISTICS OF SAMPLE CROSSING

Preceding page blank

First, the basic formula (Equation 3-1) is used to determine the initial accident prediction (a):

a = K x EI x MT x DT x HP x MS x HT x HL

where

a = initial accident prediction

K = constant

EI = factor for exposure (product of highway and train traffic)

MT = factor for number of main tracks

DT = factor for number of thru trains per day during daylight

HP = factor for highway paved (yes or no)

MS = factor for maximum timetable speed

HT = factor for highway type

HL = factor for number of highway lanes

The basic formula factor values (K, EI, MT, DT, HP, MS, HT and HL) can be determined from Table 3-2 for passive crossings, using the crossing's characteristics listed in Table 5-1:

K = 0.002268

EI = exposure index factor value for the product of 350 average daily highway vehicles times 15 total train movements per day (c x t = 5250).

= 29.26

MT = 1.52 DT = 1.55 HP = 1.00 MS = 1.36 HT = 0.82 HL = 1.00

Substituting the factor values into the basic formula yields:

a = K x EI x MT x DT x HP x MS x HT x HL

- $= 0.002268 \times 29.26 \times 1.52 \times 1.55 \times 1.00 \times 1.36 \times 0.82 \times 1.00$
- = 0.17 accidents per year

The final accident prediction (A) is determined by combining the initial prediction (a) with the crossing's accident history using Tables 3-5 thru 3-9, which are developed from the general DOT accident prediction formula (Equation 3-2). For the sample crossing, 2 accidents (N) occurred over the past 4 years (T); therefore, Table 3-8 is used. With an initial accident prediction (a = 0.17) between 0.10 and 0.20, it can be seen from Table 3-8 that the final accident prediction (A) will be between 0.25 and 0.35. A reasonable estimate of A can be determined from linear interpolation:

A = 0.25 + ((0.17 - 0.10) / (0.20 - 0.10)) (0.35 - 0.25)

= 0.32 accidents per year

To determine the number of fatal accidents at the sample crossing, the fatal accident probability is first obtained using Equation 3-3:

P(FA!A) = 1/(1 + CF X MS X TT X TS X UR)

where: CF = formula constant

- MS = factor for maximum timetable train speed
- TT = factor for thru trains per day
- TS = factor for switch trains per day
- UR = factor for urban or rural crossing

The factor values for the fatal accident probability formula can be determined from Table 3-12 using the sample crossing characteristics from Table 5-1:

CF = 695.0 MS = 0.019 TT = 0.782 TS ⁾ = 1.202 UR = 1.000

Substituting the factor values into the fatal accident probability formula yields:

P(FA!A) = 1/(1 + CF X MS X TT X TS X UR) = 1/(1 + 695.0 x 0.019 x 0.782 x 1.202 x 1.000) = .075 probability of a fatal accident given an accident

The fatal accident probability is then multiplied by the predicted accidents, computed above using Equation 3-2, to obtain the predicted number of fatal accidents for the sample crossing per Equation 3-5:

FA = P(FA!A) x A = 0.075 x 0.32 = 0.024 fatal accidents per year

To determine the number of injury accidents at the sample crossing, the injury accident probability is first obtained using Equation 3-4:

P()	IA!A) = (1)	L –	$P(FA!A))/(1 + CI \times MS \times TK \times UR)$
where:	P(FA!A)	=	probability of a fatal accident, given an accident, obtained
			from equation 3-3:
	CI	=	formula constant
	MS	=	factor for maximum timetable train speed
	тк	=	factor for number of tracks
	UR	=	factor for urban or rural crossing

н

The factor values for the injury accident probability formula can be determined from Table 3-13 using the sample crossing characteristics from Table 5-1:

P(FAIA) = .075 (computed above from fatal accident probability severity formula) CI = 4.280 MS = 0.423 TK = 1.265 UR = 1.000

Substituting the factor values into the injury accident probability formula yields:

The injury accident probability is then multiplied by the predicted accidents, computed above using Equation 3-2, to obtain the predicted number of injury accidents for the sample crossing per Equation 3-6:

To determine the combined casualty index for the sample crossing, the combined casualty index probability is first obtained using Equation 3-7:

P(CCI) = K x P(FAIA) + P(IAIA) where: K = formula weight selected by user P(FAIA) = fatal accident probability obtained from Equation 3-3 P(IAIA) = injury accident probability obtained from Equation 3-4 Substituting a value of 50 for K and the fatal and injury accident probability values computed above for the sample crossings into the combined casualty index probability formula yields:

$$P(CCI) = K \times P(FAIA) + P(IAIA)$$

= 50 x 0.075 + 0.281
= 4.031

The combined casualty index probability is then multiplied by the predicted accidents, computed above using Equation 3-2, to obtain the combined casualty index for the sample crossing per Equation 3-8:

5.1.2. Computer Programs for Calculation of Predicted Accidents and Casualties

This section describes procedures for using the DOT accident and casualty prediction formula computer programs to obtain the number of predicted accidents or casualties per year for large numbers of crossings, and to list the crossings ranked by number of predicted accidents or casualties. Complete information for making the computer runs is supplied, provided the required input data are available and are in the format specified here. Modifications can be made to the programs to accept a different format. Data in the format specified here can be obtained from the Federal Railroad Administration, Office of Safety.

Two separate FORTRAN programs are used to generate accident and casualty prediction listings. The first program calculates predicted basic, final, fatal and injury accidents as well as the combined casualty index for each crossing. The second program generates the output in a report format ranking crossings by either predicted accidents, fatal accidents or combined casualty index. The two programs run sequentially according to the following steps:

- 1. Execute the Accident and Casualty Prediction Formula Program.
- Sort the output file from step 1 in descending order of either predicted accidents, fatal accidents or combined casualty index. The field this file is sorted on will be the one that the crossings are ranked by in the output report.
- 3. Execute the Accident and Casualty Prediction Formula Report program to produce the accident/casualty prediction output report.

The Accident and Casualty Prediction Formula Program is shown in Exhibit A-1. A variable dictionary for this program is provided in Exhibit A-2. This program sequentially processes crossing input files (see Exhibit A-3 for input format) in the following manner:

While processing the crossing input file:

- 1. Select next crossing record.
- 2. Calculate basic predicted accident rate.
- 3. Calculate final predicted accident rate.
- 4. Calculate fatal, injury and combined casualty index rates.
- 5. Accumulate totals for basic, final, fatal, injury and combined casualty index rates, and also the number of crossings.
- 6. Append basic, final, fatal, injury and combined casualty index rates to current crossing record and write current record to output file.

When the crossing input file is processed:

1. Print out totals for basic, final, fatal, injury and combined casualty index rates, and also total number of crossings.

The Accident and Casualty Prediction Formula Program is divided into three sections. The first section, Calculate Basic Predicted Accidents, calculates the basic number of predicted accidents (H) for a crossing. The program uses one of three different equations to make this calculation. The equation used is dependent on the warning device classification of the current crossing. For warning device classes 1-4 the Crossbucks (passive device) equation is used , classes 5-7 the Flashing Lights equation is used and class the 8 The Gates equation is used. The factors used in the Crossbucks, Flashing Lights and Gates equations are described in detail in Section 3. For warning device classes 1-4 the program determines the appropriate highway type (HT) weighting factor value by examining the functional classification variables (FC1, FC10) of the road at the crossing. A cross reference table for these functional codes and corresponding (HT) weighting factor values can be seen in Table 3-1.

The basic accident prediction formula computes the initial predicted accident rate for each crossing on the basis of the crossing's current warning device class. If, during the last five years, a change in warning device took place, the formula computes the basic predicted accidents on the basis of the previous warning device class and then executes the Modify For Upgrades/Downgrades By Effectiveness section of the program. This portion of the program makes an adjustment to the predicted accidents using the appropriate effectiveness factor (see Tables 4–7 & 4–8) to account for the influence of the warning device change. For individual crossings, this procedure more accurately determines the short term (less than five years) change in the crossing's accident rate than use of the basic formula for the new warning device. For example, if a passive crossing was upgraded to gates in the last five years, the passive (Crossbucks) formula would be used, the results of which would be multiplied by the effectiveness factor for gates (1.0 - the effectiveness of the upgrade to gates) to obtain the initial predicted accidents for the crossing with gates. Similarly, the predicted accidents would be divided by the effectiveness factor of the new warning device if a downgrade took place.

The next section of the Accident and Casualty Prediction Formula Program, Calculate Final Predicted Accidents, (Exhibit A-1) uses an algebraic equivalent of Equation 3-2 from Section 3.2.4 to calculate the final predicted accident rate. This calculation is achieved in three basic steps. First the number of years of accident history (T) for the crossing must be determined. A maximum value of five is used even though seven years of accident history are available. The most recent years of accident history data are always used. If a crossing has been upgraded or opened during the last five years the value of T is reduced from five to the number of years since the crossing has been upgraded or opened. This same method is used for crossings which have been downgraded and private crossings which have changed to public crossings in the five year period. The second step of this calculation involves the accumulation of accident

history data to obtain the total number of accidents in the most recent T years (N). After values for T and N have been determined the final predicted accidents (A) calculation is executed.

Subroutine Casity calculates predicted fatal and injury accidents, and a combined casualty index for the current crossing. Information is passed between this subroutine and the main program via common blocks FATCOM and FATC2. This subroutine simply receives crossing information, performs fatal, injury and combined casualty index calculations, and then return values for these three calculations to the main program. For a detailed explanation of the fatal, injury and combined casualty index formulas see Section 3.3.

Sample input to the Accident and Casualty Prediction Formula Program is shown in Exhibit A-3. Each record represents one crossing, and is formatted according to the data field descriptions given in Exhibit A-4. The source of fields 1 through 22 are from the U.S. DOT-AAR National Rail-Highway Crossing Inventory; fields 23 through 29 are from the FRA Railroad Accident/Incident Reporting System. Both data bases are maintained by the Federal Railroad Administration, Office of Safety.

Sample output from the Accident and Casualty Prediction Formula Program is shown in Exhibit A-5. The field description and the data contained in them are identical to the input (Exhibits A-3 & A-4) except that another five fields, each 10 characters in length, have been added to the beginning of each record. These fields contain fatal, injury, combined casualty index, final and basic accident figures. All five of these fields are real numbers in F10.7 format. This program also writes a second output file to the terminal monitor. This file contains totals for all five of these accident prediction figures along with the total number of crossings processed.

The output from the Accident and Casualty Prediction Formula Program shown in Exhibit A-5, is used as input to the Accident and Casualty Prediction Formula Report Program, Standard Highway Stop Sign Program and also the Resource Allocation Program (see Section 5-2). The Accident and Casualty Prediction Formula Report Program, shown in Exhibit A-6, generates one of three different possible reports. The first report is a ranking by fatal predicted accidents, the second by final predicted accidents and the third by combined casualty index. The data must first be sorted in descending order on the field the crossings will be ranked by, and then used as input to the Accident and Casualty Prediction Formula Report Program. Sample output from the Accident and Casualty Prediction Report Program is shown in Figures 5-1, 5-2, and 5-3 for crossings ranked by accidents, fatal accidents and combined casualty index, respectively.

The Accident and Casualty Prediction Formula Program and its input and output files are currently designed for use with the 1982 data file which has seven years of accident history appended to each crossing record. At a future time, if accident data beyond 1982 is to be added, appropriate modifications to the programs and data files will be required to accommodate the additional data.

5.2 COMPUTER PROGRAMS FOR RESOURCE ALLOCATION MODEL

5.2.1 Resource Allocation Model for Active Warning Devices

This section is a description of the computer programs for the resource allocation model discussed in Section 4. As in the case of the Accident and Casualty Prediction Formula Program, complete information is supplied for making the necessary computer runs, provided the required input data are available and in the format specified in Section 5.1.2.

The resource allocation model is run by a sequence of three FORTRAN programs. The first program calculates the accident or casualty reduction/cost ratios for all crossings and determines if a crossing is a candidate for standard highway stop signs, the second program runs the resource allocation algorithm, and the third program generates the output in a report format. The three programs are run sequentially according to the following steps.

- 1. Execute the Accident or Casualty Reduction/Cost Ratio Program.
- Sort the output from step 1 in descending order of accident reduction/cost ratio.
- 3. Execute the Resource Allocation Program.

PUBLIC RAIL-HIGHWAY CROSSINGS Ranked by Predicted Accidents Per Year Inventory date: April 1983

TOPA	6380 9190 1750 6950	4200	5100	1130 650	1500	4500	500	13200	3030	1000 25040	11871	5865 31515	3800	12890 5000	13140	1080	12800	2000 880	2200	4000	2350	2500	1500	5260	200	2610	2430	1800	2050	3720	1440	5920	4000	0068
U-R/ HWY TYP CODE	0000		·	ი ი ი		ກ ດາ 	8 U 0 -	00			- 0	ۍ د س		 00	0 r		4(0 0 	0	4 0	n თ - O	0 0 0	0 0 7 ~ C	-	5 U		- 6	5	- -	ب ب 4 م) с		6) • • •	4
LNS LNS	4000		10	0 N	~ ~	2 10	~ ~	4	2	- თ	2	N 4	2	2 2	~ ~	2 10	ৰ ৫	2 10	2	0 0	4	~ ~	4 0	0	2 10	10	2	2	2	2 10	• •	10	2	4
TWH DVD	YES YES YES	YES	YES	YES YES	YES	YES	YES	YES	YES	YES	YES	Y ES Y ES	YES	YES YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	Y FS	YES	YES	
TTBL SPD	35 35 45	30	49	45 25	45	n 0 10 10	<u>е</u> ғ	200	49	8 8	35	25 25	40	46 25	35	2 7	<u></u> 28	2 4	45	0 10 0 10	00	06	9 6 9 0	25	9 с 0 п	4 10 10	49	8	25	25 40	00	80	15 5	
MAIN TRKS			• 🛶 •		- •				-		n.		-						•					-			-	 .	-		• 🕶		- (v v PPF
T0TL TRKS			. W .	- 0	N 1			. 4	- ·		2	.	. 61		- -		- u	n -		N -		~ ~	- vo	- 1	N +	• •••	-	- (2		• -	-	ч 1	1 A T
TOTL THRU TRNS	ល	ΝĻ	ο į	စ်ဝ	72 72	• 0	0 ₹	25	9	0 0 7	0	00	25	25 25	ωü	5	4 (<u>5</u> 4	30	ິດ	• 2	ō.	~ 00	6	~ u	ភ្	Ø	0	ю ·	0 0	• 0	4	4 (SAC CAS
DAY THRU TRNS	N N 80 N	0 @		∞ O	ē,	ոտ	~ ~	ιË	e i	<u>6</u> 0	0	00	E	ч с	чĉ	20	0	0 0	ភ្	ກເ	л ID	ហេ	† ব	9	40	100	m	0	2	0 0	0	9 64	00	TANI
TOTL SWIT TRNS	6 N O O	0 0	60	0 @	(1 0	• •	00	9 01	20	0 10	4	~ 4	. 01	N 00	60 r	30 F	0.	- 0	2	4 0	0	00	- c	G	2 0	0	œ	4 (D (90	4	• 0	0 0	CIDEN
불익	rr4	41	4	4 1-	~ <	- 1	41	- 1-	5	~ ~	~ '	~ ~		~ ~		- 4	~ r		~	- i-		00 F		~ '	4 1-	-	4	41	- 1		4	. ~	- 1	ACC
																																		ш
DATE OF CHNG																																		M TH
IS DATE OF 82 CHNG	0-0 -	~ ~	0,	- 0	00	00	~ ~	• •	0	00	0	~ ~	0	00	00	0	00	50	- 0	. .	> o	00	00	.	- c	0	0	0 (0	20	0	• •	00	KOM TH
JENTS DATE OF 81 82 CHNG	0-0- 000-		0	- 0	0 C	> 0 > 0	- c	• • • •	0 (- (0 0 0 0	00	0 0 0 0	0	0 0 0 0	o c 	- 0	0 0 0 0	0 0	- 0 - 0		00	00	> 0 > 0		- c	0	0	00			0	0	00	T FROM TH
CCIDENTS DATE 0F 80 81 82 CHNG	0-0- 000+ 00		0	- 0	0 0 0 0 7 0	00	0 0 7 0 7 0	10 0-	0 ·	00 00 -0	- 0	0 0 0 0	-	00 00 -0	0 c 	- 0 - 0	0 0 0 0 0 0	0 0 0 0	- 0 0 0		> 0 > 0	0 0 0 0	> 0 > 0 - 0		- c	0	100	0 (- (> 0 > 0 > -	00	000	00	PUT FROM TH
- ACCIDENTS DATE OF 79 80 81 82 CHNG		2 - 0	- 0	- 0 -	0 0 - c 0 0	- 0 0	0 0 7 - 0 7 - 0	- 0 - 0 0 0	- 0	0 0 0 0 - 0 0 0	0 1 0	0 0 0 0 2 0 0 1 2	- 0	00 00 -0		- 0	0 0 0 0 - 0	0 0 0 0 0 0	- 0 0 0 0 0		> 0 > -	0 0 0 0 0 0	- 0	00000		0 0 0	0 1 0 0	0 0 - 0 0 0			1 0 0	0 0 0	0 0 0 0 0 0	UTPUT FROM TH
# OF ACCIDENTS DATE 0F 78 79 80 81 82 CHNG	0 3 1 0 0 2 0 1 0 0 2 0 0 0 1	0 2 1 0 1	0 1 0			0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000		0000	000	0 0 0 0 2		0 0 0 - 0 0 - 0 -		- 0 - 0 	0 0 0 0 - 0	000000000000000000000000000000000000000			0 0 0 0 0 0	000000000000000000000000000000000000000	- 0 - 0 - 0	000	- 0 0 0	0 1 0 0 0	0 0 1 0 0			0 0 0 0 0 0 0 0	0 1 1 0 0	1 0 0 0 0	000	E OUTPUT FROM TH
# OF ACCIDENTS DATE RR OF 78 79 80 81 82 CHNG	W 0 3 1 0 0 W 2 0 1 0 1 IRR 0 4 0 0 0 A 0 2 0 1 1	SAB 0 2 1 0 1 IRR 0 2 0 0 1		IRK 1 1 0 0 1 SAB 1 0 1 1 0	TSF 10100	TSF 1 1 0 0 0	TSF 0 0 0 1 2 A 0 0 0 0 2	TSF 0 0 0 1 0		W 100000	SAB 0 0 1 0 0	SAB 0 0 0 0 2 SAB 0 0 0 0 1	TSF 0 0 0 1 0	W 0 0 1 0 0 TSF 1 0 0 0 0		SAB 1 1 0 0 0		A 00002			TSF 0 0 1 0 0		TSF 0 1 0 0 0			IRR 0 1 0 0 0	W 0 0 1 0 0	SAB 1 0 1 0 0			SAB 0 1 1 0 0	A 1 0 0 0 0		MPLE OUTPUT FROM TH
T RR	HNW 03100 HNW 20101 IMIRR 04000	IL ASAB 0 2 1 0 1 I MIRR 0 2 0 0 1		L MIRK 1 1 0 0 1 L ASAB 1 0 1 1 0	DATSF 10100 HNW 00200	0 ATSF 1 1 0 0 0	0 ATSF 0 0 0 1 2 JAA 0 0 0 0 2	O ATSF 0 0 0 1 0		UAISF 10100 HNW 10000		LASABO0002 LASAB00001	D ATSF 0 0 0 1 0	HNW 00100 0ATSF 100000	HNW 00010 DATSE 00010						0 ATSF 0 0 1 0 0	0 ATSF 0 2 0 0 0 T MTBP 0 2 4 0 0	DATSF 0 1 0 0 0			I MIRR 0 1 0 0 0	HNW 00100	LASAB 1 0 1 0 0		LASABOOTOO	LASAB 0 1 1 0 0	I AA 1 0 0 0 0	I AA 0 1 0 0 0	SAMPLE OUTPUT FROM TH
# OF ACCIDENTS DATE ST RR OF 78 79 80 81 82 CHNG	0H NW 0 3 1 0 0 0H NW 2 0 1 0 1 MI MIRR 0 4 0 0 0 MI AA 0 2 0 1 1	AL ASAB 0 2 1 0 1 MI MIRR 0 2 0 0 1		FL ASAB 1 0 1 1 0 7	COATSF 101000	CO ATSF 1 1 0 0 0	COATSF 0 0 0 1 2 MIAA 0 0 0 0 2	CO ATSF 0 0 0 1 0		CUAISF 10100 DHNW 10000	FL ASAB 0 0 1 0 0	FLASAB 0 0 0 0 2 FLASAB 0 0 0 0 1	CO ATSF 0 0 0 1 0	UNINW 0 0 1 0 0 C0 ATSF 1 0 0 0 0		AL ASAB 1 1 0 0 0		MI AA 0 0 0 0 2			CO ATSF 0 0 1 0 0	COATSF 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COATSF 0 1 0 0 0			MI MIRR 0 1 0 0 0	OH NW 0 0 1 0 0	AL ASAB 1 0 1 0 0			AL ASAB 0 1 1 0 0	MI AA 1 0 0 0 0	MI AA 0 1 0 0 0 MI AA 0 1 0 0 0	-1. SAMPLE OUTPUT FROM TH
XING # OF ACCIDENTS DATE ID # ST RR OF 78 79 80 81 82 CHNG	002153K DH NW 0 3 1 0 0 002126N DH NW 2 0 1 0 1 000118P MI MIRR 0 4 0 0 0 000213K MI AA 0 2 0 1 1	002972B AL ASAB 0 2 1 0 1 000124T MI MIRR 0 2 0 0 1	002081J DH NW 0 1 0 1 0	000120K MI MIKK 1 1 0 0 1 002778H FL ASAB 1 0 1 1 0	003640K CD ATSF 1 0 1 0 0 002087A DH NW 0 0 2 0 0	003566H C0 ATSF 1 1 0 0 0	003395J C0 ATSF 0 0 0 1 2 000223R MI AA 0 0 0 0 2	003655A C0 ATSF 0 0 0 1 0	002090H 0H NW 0 1 0 1 0	003648P CUAISF 1 0 1 0 0 002121E DH NW 1 0 0 0 0	002773Y FL ASAB 0 0 1 0 0	002/06E FL ASAB 0 0 0 0 2 002713P FL ASAB 0 0 0 0 1	003638J C0 ATSF 0 0 0 1 0	00203631L C0 ATSF 1 0 0 0 0	002119D DH NW 0 0 0 1 0 003639R CD ATSE 0 0 0 1 0	002973H AL ASAB 1 1 0 0 0	000341T MI GTW 0 1 0 0 0	000206A MI AA 0 0 0 0 2	003612G CD ATSF 0 0 0 0 1	002124A DH NW 1 0 0 0	003467K C0 ATSF 0 0 1 0 0	0032625 C0 ATSF 0 2 0 0 0	003232A C0 ATSF 0 1 0 0 0	002132S 0H NW 0 0 0 0 1	002125G DH NW 1 0 0 0	000122E MI MIRR 0 1 0 0 0	002085L 0H NW 0 0 1 0 0	0029801 AL ASAB 1 0 1 0 0		002/158 DH NW 0 0 1 0 0	002981A AL ASAB 0 1 1 0 0	000233W MI AA 1 0 0 0 0	000212D MI AA 0 1 0 0 0	TGURE 5-1. SAMPLE OUTPUT FROM TH
PREDICTED XING # OF ACCIDENTS DATE ACCIDENTS ID # ST RR OF PER YEAR 79 80 81 82 CHNG	0.622723 002153K DH NW 0 3 1 0 0 0.562409 002126N DH NW 2 0 1 0 1 0.554902 000118P MI MIRR 0 4 0 0 0 0.547862 000213K MI AA 0 2 0 1 1	0 494767 002972B AL ASAB 0 2 1 0 1 0 439817 000124T MI MIRR 0 2 0 0 1	0.414115 002081J DH NW 0 1 0 1 0	0.3465/5 000120K MIMIKK 1 1 0 0 1 0.340831 002778H FL ASAB 1 0 1 1 0	0.331321 003640K CD ATSF 1 0 1 0 0 0.315651 002087A 0H NW 0 0 2 0 0	0.315590 003566H C0 ATSF 1 1 0 0 0	0.314638 003395J C0 ATSF 0 0 0 1 2 0.308170 000223R MIAA 0 0 0 0 2	0.292314 003655A C0 ATSF 0 0 0 1 0	0.289450 002090H 0H NW 0 1 0 1 0	0.284528 003648P CUAISF 1 0 1 0 0 0.284186 002121E DH NW 1 0 0 0 0	0.249200 002773Y FL ASAB 0 0 1 0 0	0.248118 002/06E FL ASAB 0 0 0 2 0.241376 002713P FL ASAB 0 0 0 1	0.238628 003638J C0 ATSF 0 0 0 1 0	0.236150 003631L C0 ATSF 1 0 0 0 0	0.232715 002119D DH NW 0 0 0 1 0 0 231857 003639R CD ATSE 0 0 0 1 0	0.229986 002973H AL ASAB 1 1 0 0 0	0.227675 0003417 MI GTW 0 1 0 0 0 0 222212 0022265 CD ATEE 1 0 0 0	0.221769 000206A MI AA 0 0 0 0 2	0.219486 003612G CD ATSF 0 0 0 1	0.213592 002124A 0H NW 1 0 0 0 0	0.210632 003467K C0 ATSF 0 0 1 0 0	0.210502 003262S CO ATSF 0 2 0 0 0 0 204582 000153D WI WIBB 0 0 0	0.209341 003232A CD ATSF 0 1 0 0	0.208419 002132S 0H NW 0 0 0 0 1	0.205480 002125G DH NW 1 0 0 0	0.201344 000122E MI MIRR 0 1 0 0 0	0.199579 002085L OH NW 0 0 1 0 0	0.194678 0029807 AL ASAB 1 0 1 0 0 0.102551 0001110 011110 0 0	0 0 0 0 1 MAN 11 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.131855 0021158 DH NW 0 0 1 0 0	0.188165 002981A AL ASAB 0 1 1 0 0	0.182885 000233W MI AA 1 0 0 0	0.182287 000212D MIAA 0 1 0 0 0.184690 0003396 MIAA 0 1 0 0 0	FIGURE 5-1. SAMPLE OUTPUT FROM TH

.

PUBLIC RAIL-HIGHWAY CROSSINGS Ranked by predicted fatal accidents per year Inventory date: April 1983.

AAD	1750 2500 500	3530	9190	5100	2350	6380	0000	2740	2200	3800	4250	4200	8500	2000	4500	2810	13200	1000		20	3720	25040 60	2430	100	6950	150	3140	202	100	<u>8</u>	1290	13140	9590	290	120	20002	
U-R/ HWY TYP CODE	- 0 0 - 7 0 8 1) (D) 	16	ດ ແ ດ -) 6		5) a - C	• r- > 0	1 8	- c	, o , –	9 0	ი ი ი ი		r 0	- -	6		.0	о (— -	9 8 9 8	6-	80	2 F	60	0 0	ი თ ა O	0 7	60	60 -	- -) ()	80	6 (0 1	0 0 	
HWY	0 0 0	~ ~	• 0	2	40	14	.01	2 10	10	2	~ ~	10	2	~ ~	101	~ ~	N 4	-	2 10	1 11	~ 1	5 0	2	2	- 0	101	~ ~	• -	3	~	- •	10	2	2	~	2 2	
×Ω ₩	ës Es	S L	រព	ĒS	ŝ	របួ	S	ES E	ŝ	ŝ	S N	រដូ	ĒS	ŝ	3 Ñ	ŝ	ŝ	ES		ŝ	ŝ	ŝ	ŝ	ŝ		ŝ	ŝ	2 g	ĒS	ŝ		S N	ES	ĒS	g	ES ES	lion
특이	500	۔ س	ົົ	6	0 4	<u>م</u> د	5	 	ົ້	ິ ທີ	~ ~ س م	~ ~ • 0	~ 0	о и	, o	с С	~ ~ ~ 0	0	 n c	0	блі	50	5	00	່	- -	00	- <i>-</i>	. – 	0	00			0	0	ົົ	AR)
50	400	ৰ ৰ	r M	4	04	2	4	40	04	4	41	- M	4	4 4	r Ö	4 •	t Ó	(C)	~ 4	0	4 (т (D	4	60	a	4	4 4	t on		6	0	r m		4	4 (30	PRE YE/
MAIN			• -	-	- +					-	- 0	4	-					-	- 10				-	- 1		-	- •		-			• •	•	-	- 1		LTΥ PER
TOTL	- 9 -			e	- 0	•	•	- (ч – и	7	- 0	4	-	0 •			- 0	-	N -	- ID	- •	- 0	-		- 6	•			-	-			- 🖛	-	- 1	ი - ი	SUA
UTL ARU NNS	ñ 5 n	ត់ តំ	ັບ	Ø	5 ۴	ο γ	6	60 0	° 0	25	20 20	9 01	2	с- U	12	ក្ខ	2 2 2 2	25	D 4	100	ω (8 0	00	ω	D 4	ъ.	4 (0 œ	52	o :	5 a	0	100	Ø	r ;	<u>0</u> 0	CIDE
546																																					ANA
DAY THRU TRNS	00 U O	ω α	2 2	e	υç	2 01	6	с) ч	4 π	₽ 1	<u>~</u> ~	" O	4	4 (ະທ	co (N C	<u>۳</u>	3 0	4 M	N (2 10	(7)	ო (3	• ••	2 10	° ₹	. C	m 1	ഗര	2	N 1	ę	41	50	ENT
TOTL SWIT TRNS	000	o c	9 0	Ø	0 0	• 0	0	•• •	9 0	8	N C	2 2 2	•	0 (•0	0 0	20 00	0	0 0	00	0	o c	00	0 (. .	0	0 (0	0	0	0 4	6	0	0	0	- 0	CCIDI
물고	404	~ 4	1	4	~ ~		~	4 1	- 1-	2	~ <	4	~	41	- 1-	- 1		~	4 6	- 00	~ '	~ 4	4	4,	4 1	4	~ '	4	1	4	4 1	• •	-	4	41	~ ~	E A CTI
														a	D																						Ξā
DATE OF CHNG														ŗ																							OM 1 PRE
S DATE OF 82 CHNG	000			0	00	0	0	0 0		0	0 0	~	0	- c 1 1	20	0 0	5 0	• •	0 0	• 0	0	00	00	0	0 -	• •		- c	• •	0	0 0	> c	• 0	0	0	00	FROM 1 AM (PREI
DENTS DATE OF 81 82 CHNG	000 700			•	0 C	> 0 > 0	0	00	 	0	- c	- 00	0 0	• • • • • •	- 0	00	- c	0	0 ¢	• •	0	0 C 0 C	00	0	0 -	• •		- c	0	0	00	> c > -	• •	1 0	0	0 0 0 0	UT FROM 1 GRAM (PRE)
CLDENTS DATE OF 80 81 82 CHNG	000 000	 0 c		0 1 0	0 C 0 C	> 0 		00		0 1 0	0 0 - 0		- 0	0 0 0 • • •	- 0	00	- 0	0	0 ° 0 c - c	• •	- 0	0 c 0 c	00	- 0 - 0	0 - 0 -	· 0 · 0			00	0) 0 0	0	0	0 0 0 0 0 0	ITPUT FROM 1 ROGRAM (PRE
- ACCIDENTS DATE 0F 79 80 81 82 CHNG	4 1 0 0 0 0 0 0 ~	 0 0 0 0		1010	0 C 0 C 	> 0 		000	 	0 0 1 0	- c - c		0 1 0 0	00000	- 0 0	- 0 - 0 - 0	- 0 - 0	0 - 0	0 0 0 0 - 0 0 0		0	0 0 0 - 0 0	00	0 0 0		· 0 • 0	000		000	0000	0 0 0 0 0 0		· • •	0 1 0		0 0 0 0 0 0	OUTPUT FROM 1 PROGRAM (PRE)
# DF ACCIDENTS DATE 0F 78 79 80 81 82 CHNG	000 400 000 000	 	2 0 - 0	0 1 0 1 0	0 C 0 C)))))))))))))))))))	0	00000000000000000000000000000000000000		0 0 0 0 0	0 0 - 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 - 0 0 0		1 0 1 0 0		0000	000	0 0 0 0 0 0 0 0 0 0	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		· • • • • •	000000000000000000000000000000000000000		0 0 0 0	+ 0 0 0	00 00 - 0 0 - 0		- 0 0 0	0 0 0 1 0	2000	 0 0 0 0 0 0	PLE OUTPUT FROM 1 ORT PROGRAM (PRE)
# OF ACCIDENTS DATE RR OF 78 79 80 81 82 CHNG	AIRR 0 4 0 0 0 ATSF 0 2 0 0 0 ATSF 0 0 0 1 2	AIRR 0 2 0 0 1 AIRB 1 1 0 0 1		W 01010	ATSF 0 0 1 0 0 ATSF 1 0 1 0 0					ATSF 0 0 0 1 0	ATSF 0 0 0 1 0	ASAB 0 2 1 0 1	AIRR 0 0 1 0 0	AIRR 1 0 0 0 1 AIRE 0 0 0 1 0 1/7	ATSF 1 1 0 0 0			ATSF 1 0 1 0 0	ATSF 0 0 1 0 0	ATSF 1 0 0 0 0		WW 1000000 ATSF 001000			ATSF 1 0 0 0 0 MA 0 2 0 1 4	AIRR 1 0 0 0 0			ATSF 0 1 0 0 0	ATSF 1 0 0 0 0	11SF 0 1 0 0 0			W 00010	MIRR 2 0 0 0 0	11SF 10000 1W 100000	SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
# OF ACCIDENTS DATE ST RR OF 78 79 80 81 82 CHNG	MI MIRR 0 4 0 0 0 C0 ATSF 0 2 0 0 0 C0 ATSF 0 0 0 1 2	MIMIRR 0 2 0 0 1 MIMIRP 1 1 0 0 1	0H NW 2 0 1 0 1	DHNW 01010			OH NW 0 1 0 1 0		CONTSF 0 0 0 0 1	CO ATSF 0 0 0 1 0		AL ASAB 0 2 1 0 1	MIMIRR 0 0 1 0 0	MI MIRK 1 0 0 0 1 COATEE 0 0 0 1 0 1/1	CO ATSF 1 1 0 0 0		COATSF 0 0 0 1 0	CO ATSF 1 0 1 0 0	COATSF 0 0 1 0 0 MIAA 0 0 0 0 3	CO ATSF 1 0 0 0 0		0H NW 100000000000000000000000000000000000			WIAA 0 2 0 1 1	MIMIRE 1 0 0 0 0			CO ATSF 0 1 0 0 0	CO ATSF 1 0 0 0 0	COATSF 0 1 0 0 0 DH NH 1 0 0 0			DH NW 00010	MI MIRR 2 0 0 0 0	COATSF 100000	-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
# OF ACCIDENTS DATE St RR 0F 78 79 80 81 82 CHNG	MI MIRR 0 4 0 0 0 CO ATSF 0 2 0 0 0 CO ATSF 0 0 0 1 2	T MIMIRR 0 2 0 0 1	I DH NW 2 0 1 0 1	JOHNW 01010			N HO I O I O I O I O I O I O I O I O I O			J COATSF 0 0 0 1 0	COATSF 0 0 0 1 0	B AL ASAB 0 2 1 0 1	MIMIRE 0 0 1 0 0	MI MIRK 1 0 0 1 F COATCE 0 0 1 1	H CO ATSF 1 1 0 0 0		COATSF 0 0 0 1 0	CO ATSF 1 0 1 0 0	U COATSF 0 0 1 0 0 WIAA 0 0 0 0 3 3			COLUNY 100000		C0 ATSF 0 0 1 0 0	MI AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	WIMIR 10000			J CO ATSF 0 1 0 0 0	I CO ATSF 1 0 0 0 0	CONTRECTOR OF CONTRACTION OF CONTRAC			OHNW 00010	MIMIRE 2 0 0 0 0	COATSF 100000	E 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
VG # OF ACCIDENTS DATE # ST RR 0F 78 79 80 81 82 CHNG	118P MI MIRR 0 4 0 0 0 262S CO ATSF 0 2 0 0 0 395J CO ATSF 0 0 0 1 2	124T MIMIRR 0 2 0 0 1 120D MIMIDD 1 1 0 0 1	126N DH NW 2 0 1 0 1	381J DH NW 01010	167K C0 ATSF 0 0 1 0 0 240K C0 ATSF 1 0 1 0 0		HOH OH NM OF TO	087A OH NW 0 0 2 0 0	2631 CUAISF 0 1 0 0 0 312G COATSF 0 0 0 0 1	338J CO ATSF 0 0 0 1 0	339R COATSF 0 0 0 1 0 553B COATSE 0 0 1 0	9728 AL ASAB 0 2 1 0 1	153D MI MIRR 0 0 1 0 0	151P MI MIRR 1 0 0 0 1	366H C0 ATSF 1 1 0 0 0	122E MI MIRR 0 1 0 0 0	JABG UNINW UUIUU JABA COATSF OOO 10	348P CO ATSF 1 0 1 0 0	347U COATSF 0 0 1 0 0 208A MIAA 0 0 0 0 2	388Y C0 ATSF 1 0 0 0 0		121E OH NW 1 0 0 0 0 273.1 COLATSE 0 0 1 0 0	DISEL OH NW 0 0 1 0 0	377L CO ATSF 0 0 1 0 0	28913 COATSF 1 0 0 0 0 21314 MIAA 0 2 0 1 1	142R MI MIRR 1 0 0 0 0			SIGU CO ATSF 0 1 0 0 0	370N CO ATSF 1 0 0 0 0	268H COATSF 0 1 0 0 0 263Y DUNU 1 0 0 0		124A OH NW 1 0 0 0 0	358P 0H NW 00010	167L MI MIRR 2 0 0 0 0	2295 C0ATSF 100000 1256 DH NW 10000	URE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
XING # OF ACCIDENTS DATE ID # ST RR 0F 78 79 80 81 82 CHNG	000118P MI MIRR 0 4 0 0 0 003262S C0 ATSF 0 2 0 0 0 003395J C0 ATSF 0 0 0 1 2	000124T MIMIRR 0 2 0 0 1 000120D MIMIDD 1 1 0 0 1	002126N 0H NW 2 0 1 0 1	002081J 0H NW 0 1 0 1 0	003467K C0 ATSF 0 0 1 0 0 003840K C0 ATSF 1 0 1 0 0	002153K DH NW 0 3 1 0 0	002090H 0H NW 0 1 0 1 0	002087A 0H NW 0 0 2 0 0	003812G C0 ATSF 0 0 0 0 1	003638J CD ATSF 0 0 0 1 0	003639R CO ATSF 0 0 0 1 0 003253P CO ATSF 0 0 1 0	002972B AL ASAB 0 2 1 0 1	000153D MI MIRR 0 0 1 0 0	000151P MI MIRR 1 0 0 0 1	003566H C0 ATSF 1 1 0 0 0	000122E MI MIRR 0 1 0 0 0	00208854 UH NW 0 0 1 0 0 0036854 CD ATSF 0 0 0 1 0	003848P C0 ATSF 1 0 1 0 0	003347U C0ATSF 0 0 1 0 0 0002080 MT AA 0 0 0 0 2	003388Y C0 ATSF 1 0 0 0 0	002115B 0H NW 0 0 1 0 0	002121E 0H NW 1 0 0 0 0 003373.1 CD ATSE 0 0 1 0 0	002085L 0H NW 0 0 1 0 0	003377L C0 ATSF 0 0 1 0 0	0032898 CUAISF 1 0 0 0 0 000013k MIAA 0 2 0 1 1	000142R MI MIRR 1 0 0 0 0	002031F 0H NW 0 0 0 0 1		003616J CD ATSF 0 1 0 0 0	003370N C0 ATSF 1 0 0 0 0	003266H CO ATSF 0 1 0 0 0 003063V 04 MM 1 0 0 0		002124A OH NW 1 0 0 0	002058P 0H NW 0 0 0 1 0	000167L MI MIRR 2 0 0 0 0	0032295 C0 ATSF 1 0 0 0 0 002125G DH NW 1 0 0 0 0	FIGURE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
ED XING # DF ACCIDENTS DATE TS ID # ST RR OF R 78 79 80 81 82 CHNG	2 000118P MI MIRR 0 4 0 0 0 1 003262S C0 ATSF 0 2 0 0 0 8 003395J C0 ATSF 0 0 0 1 2	7 000124T MIMIRR 0 2 0 0 1 7 000120B MIMIBB 1 1 0 0	0 002126N 0H NW 2 0 1 0 1	55 002081J DH NW 0 1 0 1 0	6 003467K C0 ATSF 0 0 1 0 0 1 003840k r0 ATSF 1 0 1 0 0	E 002153K 0H NW 0 3 1 0 0	3 002090H 0H NW 0 1 0 1 0	B 002087A 0H NW 0 0 2 0 0	7 0036126 C0 ATSF 0 0 0 0 1	7 003638J CO ATSF 0 0 0 1 0	5 003839R C0 ATSF 0 0 0 1 0 9 003253B C0 ATSF 0 0 1 0	8 002972B AL ASAB 0 2 1 0 1	5 000153D MI MIRR 0 0 1 0 0	1 000151P MIMIRE 1 0 0 0 1 2 000151 CONTER 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	2 003566H C0 ATSF 1 1 0 0 0	1 000122E MI MIRR 0 1 0 0 0	B 00208864 UH NW 0 0 1 0 0 B 00368554 CD ATSF 0 0 0 1 0	B 003648P C0 ATSF 1 0 1 0 0	8 003347U CDATSF 0 0 1 0 0 0 000208A MIAA 0 0 0 0 2	4 003388Y C0 ATSF 1 0 0 0 0	4 0021158 0H NW 0 0 1 0 0	3 002121E 0H NW 1 0 0 0 0 B 003373,1 CD ATSF 0 0 1 0 0	B 002085L 0H NW 0 0 1 0 0	2 003377L C0 ATSF 0 0 1 0 0	1 0032898 C0 ATSF 1 0 0 0 0 4 0000313K MT AA 0 2 0 1 1	6 000142R MI MIRR 1 0 0 0 0	2 002031F 0H NV 0 0 0 0 1		3 003616J CO ATSF 0 1 0 0 0	7 003370N C0 ATSF 1 0 0 0 0	3 003266H COATSF 0 1 0 0 0 CO32663V CUANY 1 0 0 0		0 002124A 0H NW 1 0 0 0	3 002058P 0H NW 0 0 0 1 0	3 000167L MI MIRR 2 0 0 0 0	4 003229S C0 ATSF 1 0 0 0 0 7 002125G DH NW 1 0 0 0 0	FIGURE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
ICTED # 0F ACCIDENTS DATE L XING # 0F ACCIDENTS DATE Dents ID # 5T RR 0F YEAR 79 80 81 82 CHNG	7902 000118P MI MIRR 0 4 0 0 0 9501 003262S C0 ATSF 0 2 0 0 0 8748 003395J C0 ATSF 0 0 0 1 2	7967 0001247 MIMIRR 0 2 0 0 1 4407 0001300 MIMIDD 1 1 0 0 1	1440 002126N DH NW 2 0 1 0 1	9935 002081J DH NW 0 1 0 1 0	7386 003467K C0 ATSF 0 0 1 0 0 7001 003840K C0 ATSF 1 0 1 0 0	2695 002153K DH NW 0 3 1 0 0	2673 002090H 0H NW 0 1 0 1 0	2278 002087A 0H NW 0 0 2 0 0	1839 0032831 CU AISE 0 1 0 0 0 1577 0038126 CO ATSF 0 0 0 0 1	8447 003638J CO ATSF 0 0 0 1 0	8895 003639R COATSF 0 0 0 1 0 8333 003528 COATSE 0 0 1 0	7968 0029728 AL ASAB 0 2 1 0 1	7935 000153D MI MIRR 0 0 1 0 0	7831 000151P MI MIRR 1 0 0 0 1 7525 003615 COATER 0 0 1 0 2/7	7532 003566H C0 ATSF 1 1 0 0 0	7381 000122E MI MIRR 0 1 0 0 0	5869 00208854 UM NW 0 0 1 0 0 5869 0038854 CD ATSF 0 0 0 1 0	5448 003848P C0 ATSF 1 0 1 0 0	5378 003347U COATSF 0 0 1 0 0 5340 0003040 MT AA 0 0 0 0 3	4964 003368Y C0 ATSF 1 0 0 0 0	4784 0021158 0H NW 0 0 1 0 0	4633 002121E DH NW 1 0 0 0 0 424R 003373.1 CD ATSF 0 0 1 0 0	4086 002085L QH NW 0 0 1 0 0	3962 003377L C0 ATSF 0 0 1 0 0	3861 0032898 CUAISF 1 0 0 0 0 3764 000013k MIAA 0 2 0 1 1	3726 000142R MI MIRR 1 0 0 0	3682 002031F 0H NW 0 0 0 0 1	35558 003338K CD ATCF 0 0 0 1 0	3403 003616J CO ATSF 0 1 0 0	3267 003370N CO ATSF 1 0 0 0 0	3093 003268H COATSF 0 1 0 0 0 2558 003003V 00 NH 1 0 0 0		1840 002124A OH NW 1 0 0 0	1853 002058P OH NW 0 0 0 1 0	1653 000167L MI MIRR 2 0 0 0	1594 003229S C0ATSF 1 0 0 0 0 1487 002125G DH NW 1 0 0 0	FIGURE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
REDICTED # OF ACCIDENTS DATE # OF ACCIDENTS DATE CCIDENTS ID # ST RR OF CCIDENTS ID # 78 79 80 81 82 CHNG ER YEAR	.047902 000118P MI MIRR 0 4 0 0 0 .039501 003262S CO ATSF 0 2 0 0 0 .038748 003395J CO ATSF 0 0 0 1 2	.037967 0001247 MIMIRR 0 2 0 0 1 034407 0001305 MIMIEP 1 1 0 0 1	.031440 002126N 0H NW 2 0 1 0 1	029935 002081J DH NW 0 1 0 1 0	.027386 003467K C0 ATSF 0 0 1 0 0 027001 003840K C0 ATSF 1 0 1 0 0	.022695 002153K DH NW 0 3 1 0 0	022673 002090H 0H NW 0 1 0 1 0	.022278 002087A 0H NW 0 0 2 0 0	.021577 003612G C0 ATSF 0 0 0 0 1	018447 003638J CO ATSF 0 0 0 1 0	.018895 003839R COATSF 0 0 0 1 0 018332 0035538 COATSE 0 0 1 0	017968 0029728 AL ASAB 0 2 1 0 1	017935 000153D MI MIRR 0 0 1 0 0	.017831 000151P MI MIRR 1 0 0 0 1	.017532 003566H C0 ATSF 1 1 0 0 0	.017381 000122E MI MIRR 0 1 0 0 0	.0166/6 00208864 UM NW 0 0 1 0 0 015869 0038854 C0 ATSF 0 0 0 1 0	015448 003648P C0 ATSF 1 0 1 0 0	.015378 003347U CD ATSF 0 0 1 0 0 015260 0000080 MT AA 0 0 0 0 0 0	.014964 003388Y C0 ATSF 1 0 0 0	014784 0021158 0H NW 0 0 1 0 0	.014B33 002121E 0H NW 1 0 0 0 0 01424R 003373.1 CD ATSF 0 0 1 0 0	.014086 002085L OH NW 0 0 1 0 0	013962 003377L C0 ATSF 0 0 1 0 0	.013861 0032898 C0 AISF 1 0 0 0 0 013764 000013K MI AA 0 2 0 1 1	013726 000142R MI MIRR 1 0 0 0	.013682 002031F 0H NW 0 0 0 0 1	.013556 003338K CD ATCF 0 0 1 0	.013403 003616J CD ATSF 0 1 0 0 0	013267 003370N C0 ATSF 1 0 0 0	013093 003268H C0 ATSF 0 1 0 0 0		.011840 002124A 0H NW 1 0 0 0	011853 002058P 0H NW 0 0 0 1 0	.011653 000167L MI MIRR 2 0 0 0	.011594 0032295 C0 ATSF 1 0 0 0 0 011487 0021256 DH NW 1 0 0 0	FIGURE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)
PREDICTED FATAL XING # OF ACCIDENTS DATE Accidents ID # St RR OF Per year 10 # 51 RR OF	0.047902 000118P MI MIRR 0 4 0 0 0 0.039501 003262S C0 ATSF 0 2 0 0 0 0.038748 003395J C0 ATSF 0 0 0 1 2	0.037967 000124T MIMIRR 0 2 0 0 1 0.034407 000120B MIMIDP 1 1 0 0 1	0.031440 002126N DH NW 2 0 1 0 1	0.029935 002081J DH NW 0 1 0 1 0	0.027386 003467K C0 ATSF 0 0 1 0 0 0.027001 003840K C0 ATSF 1 0 1 0 0	0.022895 002153K DH NW 0 3 1 0 0	0.022873 002090H 0H NW 0 1 0 1 0	0.022278 002087A 0H NW 0 0 2 0 0	0.021577 0036126 C0 ATSF 0 0 0 0 1	0.018447 003838J CO ATSF 0 0 0 1 0	0.018895 003839R CO ATSF 0 0 0 1 0 0.018933 003559 CO ATSF 0 0 1 0	0.017988 0029728 AL ASAB 0 2 1 0 1	0.017935 000153D MI MIRR 0 0 1 0 0	0.017831 000151P MI MIRR 1 0 0 0 1	0.017632 003566H CD ATSF 1 1 0 0 0	0.017381 000122E MI MIRR 0 1 0 0 0	0.01566/15 00208543 UH NW 0 0 1 0 0 0.0155669 0036855A CO ATSF 0 0 0 1 0	0.015448 003848P C0 ATSF 1 0 1 0 0	0.015378 003347U COATSF 0 0 1 0 0 0.015340 0003080 MT AA 0 0 0 0 3	0.014964 003368Y CD ATSF 1 0 0 0	0:014784 002115B 0H NW 0 0 1 0 0	0.014633 002121E 0H NV 1 0 0 0 0 0.01424R 003373.1 CD ATCF 0 0 1 0 0	0.014088 002085L 0H NW 0 0 1 0 0	0.013962 003377L C0 ATSF 0 0 1 0 0	0.013861 0032898 C0 AISF 1 0 0 0 0 0.013764 0000313K MT AA 0 2 0 1 1	0:013726 000142R MI MIRR 1 0 0 0	0.013682 002031F 0H NV 0 0 0 0 1	0.013558 003228K CD ATCF 0 0 1 0	0.013403 003616J C0 ATSF 0 1 0 0 0	0.013267 003370N CO ATSF 1 0 0 0	0.013093 003268H C0 ATSF 0 1 0 0 0 0.01555 003063V 0H MU 1 0 0 0		0.011940 002124A 0H NW 1 0 0 0	0.011853 002058P DH NW 0 0 0 1 0	0.011653 000167L MI MIRR 2 0 0 0	0.011594 0032295 C0 ATSF 1 0 0 0 0 0.011487 0021256 DH NW 1 0 0 0 0	FIGURE 5-2. SAMPLE OUTPUT FROM 1 REPORT PROGRAM (PRE)

ŧ.

-

PUBLIC RAIL-HIGHWAY CROSSINGS Ranked by Predicfed Combined Casualty index C.C.I.* Inventory date: April 1983

AADT	2500 2500 <t< th=""><th></th></t<>	
U-R/ HWY TYP CODE	イロ·OィナートOキャーT>OィートOFOOOテーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
LNS LNS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	દ
AWH VWH	, , , , , , , , , , , , , , , , , , ,	YEAI
TTBL SPD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PER
MAIN TRKS		NDEX
TOTL	<pre></pre>	ILTY]
TOTL THRU TRNS		SASUP
DAY Thru Trns	๔ ๛ฃ๛๛๛๚๛ฃ๛๛๛ฃ๛๛๐๛๛ฃ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	NED
TOTL SWIT TRNS	, № № № С С С С С С С С С С С С С С С С	OMBI
물고	404747474747774477744777744777744774747474	ED C
DATE DF CHNG	т 17/79 А	EDICTI
83 - S	200000000000000000000000000000000000000	PRI
	A 000+0-000-0000000000000000000000000000	Ξ
	00000-004000-0-00-0-0-0-0-0-0-0-000000	RA
¥ ' б'	D 000000-0000-0000000000000000000000000	50
10 - - -		PR.
RR	TALE CALLER CALL	ORT
ST		REF
¥ UI ∦ II	000118P 003395J 003395J 000124T 000124T 0003640K 0003640K 0003640K 0003611J 00036140 00036139J 0003618J 0003638C 0003668A 0003668A 0003668A 0003668A 0003668A 0003668A 0003168C 0003168C 0003168C 0003168C 0003168C 0003168C 0003168C 0003168C 0003168C 0003268A 00033730 0003268A 0003268A 00033730 0003268A 0003268A 00033730 0003268A 00033730 0003268A 00033730 0003268A 00033730 0003268A 00033730 0003268A 00033730 0003268A 00033730 0003268A 0003268A 00033730 0003268A 0003268A 00033730 0003268A 0003278	
PREDICTED C.C.I.* Per year	2. 54634 2. 034148 2. 034148 1. 523945 1. 523945 1. 523945 1. 523945 1. 226553 1. 226553 0. 953956 0. 953956 0. 953956 0. 953956 0. 73373 0. 73457 0. 734577 0. 734577 0. 734577 0. 734577 0. 7345777 0. 734577777777777777777777777777777777777	I
RANK	-0°®48899999999999999999999999999999999999	

- 4. Sort the output from step 3 in descending order of accident or casualty reduction/cost ratio.
- 5. Execute the Resource Allocation Report Program.

The Accident or Casualty Reduction/Cost Ratio Program and variable dictionary are shown in Exhibits B-1 and B-2. This program reads three input files:

- 1. Output from the Accident and Casualty Prediction Formula Program, Exhibit A-5,
- 2. Cost, effectiveness and funding data and
- 3. User options for running of the Resource Allocation Program

The second input file of cost, effectiveness and funding data is to be generated by the user. Suggested values for cost and effectiveness data are given in Section 4.2.4 and 4.2.5. A sample input file of this type is shown in Exhibit B-3. The first line of input contains the cost data in three fields, each of length 10. The first entry on the line is the cost of upgrading a passive crossing to a flashing light; the second entry is the cost of upgrading a passive crossing to a gate; and the third entry is the cost of upgrading a flashing light to a gate. The second line of input contains the standard effectiveness data in three fields, each of length 10. The order is the same as for the cost data on the first line. The third line of input contains extended effectiveness data in twelve fields, each of length 10. These twelve fields represent four sets of extended effectiveness data based on trains and tracks. Fields 1-3 contain effectiveness values for crossings with single tracks and less than 11 trains, fields 4-6 are the effectiveness values for crossings with single tracks, and 11 or more trains, fields 7-9 are the effectiveness values for crossings with multiple tracks, less than 11 trains, and fields 10-12 are the effectiveness values for crossings with multiple tracks and 11 or more trains. The order of the 3 effectiveness values within each of these 4 sets is the same as that of the cost and standard effectiveness data. The fourth and last line of this input file consists of one field of length 10 containing the maximum amount of available funding in dollars. This value is to be established by the user.

The third and final input file to the Accident or Casualty Reduction/Cost Ratio Program is generated interactively by the program at the time of execution. (See subroutine Query Exhibit B-1.) The program prompts the user with a series of four queries. The user response to the first query determines whether standard or extended effectiveness values will be used throughout the resource allocation model. A response of "0" introduces the use of standard effectiveness values, "1" the use of extended effectiveness values. The second and third queries determine the accident or casualty measure (AC) used throughout the model. A user response of "0" to the second query, "should accident severity be used or not", will introduce the use of final predicted accidents (A) as the accident or casualty measure (AC). A response of "1" will generate the third query "should severity consider fatalities only or combined casualty index". A response of "0" to this third query will introduce the use of predicted fatal accidents as the accident or casualty measure, "1" the use of combined casualty index. The fourth and final query determines if crossings recommended for active devices which are also candidates for standard stop sign upgrades will be noted in the final report.

The Accident or Casualty Reduction/Cost Ratio Program in Exhibit B-1 performs the following algorithm:

- 1. Query program option parameters.
- 2. Write program option parameters to temporary file.
- 3. Read cost, effectiveness and total resources available data.
- 4. While not at end of crossings input file
 - 4a. Select next crossing with current.warning device class not equal to 8.
 - 4b. Determine if current crossing is a possible candidate for stop signs.
 - 4c. Select three effectiveness values for current crossing.
 - 4d. Calculate three effectiveness/cost ratios.
 - 4e. Determine accident or casualty measure (AC).
 - 4f. Calculate accident or casualty reduction/cost ratios for current crossing.
 - 4g. Append accident or casualty reduction/cost ratio and stop sign candidate flag to current crossing record and write to output file.
- 5. Stop execution when end of input file is reached.

The calculation of the accident or casualty reduction/cost ratio for each crossing depends on the crossings current warning device and the number of tracks at the crossing

(see Calculate Ben/Cos section, Exhibit B-1). If the crossing already has gates (warning device class 8), it is deleted from consideration.

If the crossing has flashing lights or other active devices (warning device classes 5, 6 and 7), an accident or casualty reduction/cost ratio (ACR/C) for upgrading to gates is calculated according to the equation:

$$ACR/C = AC (EFFECT_3/COST_3)$$

where AC is either the number of predicted accidents, fatal accidents or the combined casualty index for the crossing from the accident and casualty prediction formulas and COST₃ and EFFECT₃ are the cost and effectiveness of the upgrade, as discussed in Section 4. It is important to note here that, if the user has chosen to implement standard effectiveness values throughout the resource allocation model, EFFECT_j simply represents the single effectiveness value for a crossing upgrade. However, if extended effectiveness values are in use, EFFECT_j can have one of four values depending on the crossing's number of trains and tracks (see Section 4.2.5 on extended effectiveness values).

If the crossing is passive (warning device classes 1-4) but has multiple tracks, an accident or casualty reduction/cost ratio for upgrading to gates is calculated according to equation:

$$ACR/C = AC (EFFECT_2/COST_2)$$

This forces gates to be installed at multiple track passive crossings in accordance with Federal guidelines. If the crossing is passive but has only one track, an accident or casualty reduction/cost ratio is calculated for upgrading to flashing lights according to the equation:

$$ACR/C = AC (EFFECT_{|}/COST_{|})$$

The incremental accident or casualty reduction/cost ratio equation for installing a gate at the passive crossing,

is not calculated by the Accident or Casualty Reduction/Cost Ratio Program, but is calculated later by the Resource Allocation Program. However, in the case where $EFFECT_2/COST_2$ is greater than $EFFECT_1/COST_1$, the Accident or Casualty Reduction/Cost Ratio Program calculates a ratio given by the equation:

 $ACR/C = AC (EFFECT_2/COST_2)$

for all passive crossings, regardless of the number of tracks. In this case, the installation of gates is always more cost-effective than installation of flashing lights. The Resource Allocation Program does not calculate the incremental accident or casualty reduction/cost ratio in this case. For convenience of storage, all accident or casualty reduction/cost ratios are multiplied by 10⁶; i.e., they are expressed in accidents per million dollars.

In addition to calculating the accident or casualty reduction/cost ratio for each crossing this program also determines if a crossing is a possible candidate for standard stop signs. (See Stop Qualification Section, Exhibit B-1) For a crossing to qualify for consideration for standard stop signs it must meet the following criteria:

- 1. Total trains per day greater than 10
- 2. No existing standard stop signs
- 3. Present warning device class less than 5
- 4. Crossing must be single track
- 5. For rural area crossings the annual average daily traffic must be less than 400
- 6. For urban area crossings the annual average daily traffic must be less than 1500
- 7. Crossing must be local highway type.

If a crossing meets all of the above conditions, the variable STPFLG is given a value of 1. If it does not, it receives a value of zero. This variable is then written to the output file with current crossing record for reference in the Resource Allocation Report Program.

Sample output from the Accident or Casualty Reduction/Cost Ratio Program is shown in Exhibit B-4. Field descriptions for this output are given in Exhibit B-5. This output must be sorted in descending order of accident or casualty reduction/cost ratio (the first 10 columns), and then used as input to the Resource Allocation Program.

The Resource Allocation Program (Exhibit C-1) performs the algorithm described in Section 4, recommending the crossings to be improved and the warning device to be installed. A variable dictionary for the program is given in Exhibit C-2. The program reads each crossing in order, starting with the highest accident or casualty reduction/cost ratio.

If the crossing is passive with single track, an additional incremental accident or casualty reduction/cost ratio is calculated for making an upgrade to gates given by the following equation:

$ACR/C = AC (EFFECT_2 - EFFECT_1)/(COST_2 - COST_1).$

It is temporarily assumed that a flashing light will be recommended at the crossing. Since this is only a temporary decision, this crossing is not written to the output file immediately. Instead, it is stored in a separate list of crossings until it is determined whether or not sufficient funding is available to install a gate.

Every time a crossing is read in, the accident or casualty reduction/cost ratio calculated by the first program is compared with the incremental accident or casualty reduction/cost ratio calculated for the crossings stored in the temporary decision list. All crossings stored in the temporary list with incremental accident or casualty reduction/cost ratios greater than the accident or casualty reduction/cost ratio for the crossing that has just been read are recommended for gates, and that decision is

finalized by removing the crossing from the temporary list and writing it into the output file. If the crossing that has just been read is passive with single track, it is added to the temporary list as described above. Otherwise a gate is recommended and the crossing is immediately written to the output file. Each time a crossing is written either to the output file or the temporary list, the cost of the recommended upgrade is added to the cumulative amount spent. When this amount exceeds the maximum amount allowed, those passive single track crossings still on the temporary decision list are recommended for flashing lights and are written to the output file as final decisions. The minimum accident or casualty reduction/cost ratio for the run is written to a separate file to be read by the Resource Allocation Report Program for use in calculating the decision criteria.

Sample output and output field descriptions from the Resource Allocation Program are shown in Exhibits C-3 and C-4. This output is then sorted in descending order of accident or casualty reduction/cost ratio (columns 1-10) for input into the Resource Allocation Report Program.

The Resource Allocation Report Program is shown in Exhibit C-5. This program calculates the decision criteria and generates the output in a report format. The decision criteria, DC_1 , DC_2 , DC_3 and DC_4 , are calculated from equations 4-4, 4-5, 4-6 and 4-7, respectively, described in Section 4.2.6. If the crossing being considered is passive, single-track, the program calculates DC_1 and DC_2 . If the crossing is passive, multiple-track, DC_3 is calculated. If the crossing has flashing lights, DC_4 is calculated. Sample output from the Resource Allocation Report Program is shown in Figures 5-4 to 5-8.

5.2.2 Resource Allocation Model for Standard Highway Stop Signs

The Standard Stop Sign Report Program, shown in Exhibit D-1, determines if a crossing is a candidate for standard highway stop signs and, in report format, produces a listing of these candidate crossings ranked by either predicted accidents, fatal accidents or combined casualty index. The input file to this program is the output file from the Accident or Casualty Prediction Formula Program (see Exhibit A-5). This file must first be sorted in descending order on the field the user chooses qualifying crossings to be ranked on. For example, if the user requires a listing of all crossings that qualify for

standard stop sign upgrades, ranked by combined casualty index, they would first sort the input file in descending order on the combined casualty index field. The criteria for determining stop sign candidacy in this program are the same as those stated in the description of the Accident or Casualty Reduction/Cost Ratio Program. Sample output from the Standard Stop Sign Report Program is shown in Figure 5-9.

E ALLOCATION RESULTS E) E) \$65300. \$58700.

	5 >= 11	MULTIPLE	TRACK		.57	. 78	
	TRAIN	SINGLE	TRACK	1	.61	.80	
VALUES:	5 <= 10	MULTIPLE	TRACK	4 4 4	. 65	. 86	
CTIVENESS	TRAINS	SINGLE	TRACK	9 1 1 1	. 75	90	
EXTENDED EFFE		UPGRADE	OPTION	1	PASSIVE - FL	PASSIVE - G	

					TERIA	DC3
					ION CRI	DC2
					DECIS	DC1
					CUMULATIVE REDUCED	ACCIDENTS PER YEAR
	1	.57	. 78	.63	CUMULATIVE	COST \$THOUSAND)
		.61	.80	.69	TOTAL	# OF TRAINS (:
くつてくこ	4 1 1 1 1	, 65	. 86	. 65	TOTAL	# UF TRACKS
		L .75	. 90	G . 89	PRESENT	DEVICE
	1	PASSIVE - F	PASSIVE - G	FLASHING -	RECOMMENDED	WARNING
					ACCIDENTS	(ACC/\$MILL)

LUES	DC4	1	. 282	. 254		396			, 360			502	. 514		. 547	. 636	, 638	. 656	. 655	.696	.714	557	. 667		.742			. 752	. 756	. 742	. 771	. 826	.839			.670	.671		. 866	
RIA VA	ŝ	1								.440																														
N CRITER	0C2 [, , ,			. 820		. 696	1.094			. 864			1.091										1.768		1.829	1.497							2.070	1.725			2.124		
DECISIO	001				. 253		. 283	. 446			. 352			. 444								~``		.720		. 745	610							.843	. 703			. 865		
REDUCED	PER YEAR	1111	0.500544	0.930223	1.374145	1.730255	2.126069	2.362047	2.665521	2.988531	3.307392	3.588267	3.862538	4.055085	4.312695	4.534235	4.755060	4.969885	5 3178617	5 238 12487	5:57862238	5.774946	5.971034	6.117042	6.307139	6.448263	6.588554	6.776016	6.962544	7.146702	7.329579	7.500340	7.668318	7.793059	7.914802	8.077834	8.240778	8.362340	8.525107	
CUMULATIVE	(\$THOUSAND)	+ 1 1 1 1 1	59	117	183	241	307	361	409	475	540	599	857	701	760	818	877	936	662	1053 3	1112	1171	1229	1273	1332	1376	1419	1478	1537	1596	1654	1713	1772	1815	1859	1918	1977	2020	2079	
TOTAL # DF	TRAINS	1 1 1 1 7	60	12	15	4	22	n	ភ្	12	1	5	4	14	æ	ø	7	4	27	4	4	27	12	4	8	4	22	5	~	27	æ	ø	80	7	14	14	27	-	4 () ()	
TOTAL # DF	TRACKS		-	-	-	m	-	-	-	ო	-	-	-	-	-	7	-	-	2	-	-	-	-	÷	-	-	-	-	-	7	-	-	-	-	-	-	-	-	-	
PRESENT	DEVICE	1 1 1 1	LIGHT	LIGHT	CROSSBUCK	LIGHT	CROSSBUCK	CROSSBUCK	LIGHT	CROSSBUCK	CROSSBUCK	LIGHT	LIGHT	CROSSBUCK	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	CROSSBUCK	LIGHT	CROSSBUCK	CROSSBUCK	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	LIGHT	CROSSBUCK	CROSSBUCK	LIGHT	LIGHT	CROSSBUCK	LIGHT	
RECOMMENDED VADNING	DEVICE		GATE	GATE	GATE	GATÉ	GATE	LIGHT	GATE	GATE	GATE	GATE	GATE	LIGHT	GATE	GATE	GATE	GATE	GATE	GATE	GATE	GATE	GATE	LIGHT	GATE	LIGHT	LIGHT	GATE	GATE	GATE	GATE	GATE	GATE	LIGHT	LIGHT	GATE	GATE	LIGHT	GATE	
REDUCTION	(ACC/\$MILL)) } 4 8 8 8 8 8 8 8 8 8 8 8 8	8.527157	7.319916	6.798189	6.066612	6.061464	5.387630	5.169916	4.946551	4.883017	4.784919	4.672418	4.396058	4.388587	3.774107	3.761930	3.659706	3.555914	3.451976	3.362426	3.344532	3.340516	3.333519	3.238443	3.222003	3.202999	3.193567	3.177647	3.137275	3.115458	2.909045	2.801632	2.847971	2.779522	2.777379	2.775870	2.775377	2.772870	
PREDICTED ACCIDENTS	PER YEAR	1 1 1 1 1 1 1 1 1 1 1 1	0.582409	0.622723	0.554902	0.547862	0.494767	0.314638	0.439817	0.414115	0.398576	0.315590	0.308170	0.315651	0.289450	0.340831	0.248118	0.241376	0.331321	0.227675	0.221769	0.284528	0.284186	0.194678	0.213592	0.188165	0.229986	0.210632	0.209582	0.292314	0.205480	0.191866	0.188739	0.166321	0.199579	0.236279	0.238150	0.162082	0.182885	
CROSSING		1 4 1 1 1 1 1	00212BN	002153K	000118P	000213K	002972B	003395J	0001247	002081J	000120R	003566H	000223R	002087A	002090H	002778H	00270BE	002713P	003840K	000341T	00020BA	003648P	002121E	002980T	002124A	002981A	002973H	003467K	0001530	003655A	002125G	002734H	0021158	000509J	002085L	002088G	003631L	000692S	000233W	

(ACCIDENT REDUCTION)

_	
Ź	Ē
Ē	5
Ē	1
7	3
\geq	Ś
7	Ś
Ē	1
ā	2
5	-
- Ei	ī
7	5
Ę	
Ģ	Ś
ç	2
	-
-	2
4	2
F	-
4	
E	2

I Ļ

FIGURE 5-5. SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM

		LUES	004		. 325	. 269	373	C L	.517		.589	. 582	.473	.640					. 689	.690		.540		. 746	582	. 587			.612		
		RIA VA	DC3					. 392							140		. 659										. 764				
		ON CRITE	DC3	. 463	.572		. 644			.995					1 588	1.600		1.638		1.671	1.694		1.234					- 00 - F		1.574	1.615
		DECISI	DCI	. 189	. 233		. 263			. 406					647	.652	Ŭ	. 66 .	1	.681	.690	I	. 503					207.		.641	. 658
ĹĔ		CUMULATIVE REDUCED FATAL ACC	PER YEAR	0.038321	0.073194 0.101176	0.127373	0.179271	0.202620	0.222799	0.257632	0.273594	0.304857	0.319745	0.333941	0.349612	0.370479	0.385814	0.406233	0.419815	0.429765 0.442923	0.452743	0.465781	0.480156	0 504585	0.516684	0.528677	0.541903	0.550533	0.571039	0.579631	0.588004
AINS >= 11 E MULTIF	. 57 . 57 . 63	CUMULATIVE	\$THOUSAND	65	131 189	248	313 372	437	550 555	620	679 121	796	855	914	9/9 1023	1066	1132	1219	1278	1322	1424	1483	1548	1607 1666	1724	1783	1848	1036	1995	2039	2082
: TF PLE SINGL TRACK		TOTAL # OF	TRAINS (15	IJœ	5 1	<u></u> 5 0	2	27 27	14	r ;	20	32	co (שמ	0	~ 0	Dω	4	j) a	• •	27	22	17	27	15	(C) (C)	0 6	14	14	15
VALUES S <= 10 MULTI TRACK	. 98 98. 98.	TOTAL # OF	TRACKS	-	.	-		ю -	- 0	-	.		-	~	N 7		~ ~		-		•	-	- 0	N -	•	-	~ ~			-	-
FECTIVENESS TRAINS SINGLE TRACK	۲	PRESENT	DEVICE	CROSSBUCK	CROSSBUCK LIGHT	LIGHT	CRUSSBUCK LIGHT	CROSSBUCK	LIGHT	CROSSBUCK	LIGHT		LIGHT		CRUSSBUCK	CROSSBUCK	CROSSBUCK	CROSSBUCK	LIGHT	CROSSBUCK LTGHT	CROSSBUCK	LIGHT	CROSSBUCK	LIGHT	LIGHT	LIGHT	CROSSBUCK		LIGHT	CROSSBUCK	CROSSBUCK
EXTENDED EF UPGRADE OPTION	PASSIVE - F PASSIVE - G FLASHING -	RECOMMENDED MADNING	DEVICE	GATE	GATE Gate	GATE	GATE	GATE	GATE GATE	GATE	GATE	GATE	GATE	GATE	GATE	LIGHT	GATE		GATE	LIGHT Gate	LIGHT	GATE	GATE	GATE	GATE	GATE	GATE		GATE	LIGHT	LIGHT
		FATAL ACC. Reduction Cost Batto	(ACC/\$MILL)	0.586848	0.534042 0.476690	0.446289	0.421523 0.415221	0.357565	0.343760	0.272929	0.271925	0.265822	0.253631	0.241832	0.239987	0.237349	0.234839	0.232128	0.231374	0.227168	0.224202	0.222106	0.220134	0.203441	0.206117	0.204307	0.202535	0.202301 0 100536	0. 196020	0.196171	0.191163
		PREDICTED Fatal Acctnents	PER YEAR	0.047902	0.038748 0.031440	0.037967	0.034407 0.027386	0.029935	0.0226/3	0.022278	0.017935	0.017532	0.021577	0.021839	0.018222	0.013861	0.017831	0.013556	0.015260	0.013267	0.013093	0.018895	0.017968	0.01944/ 0.013682	0.017535	0.017381	0.015378	0.011633	0.016676	0.014086	0.013726
		CROSSING ID #		000118P	003395J 002126N	000124T	000120K 003467K	002081J	002090H 003640K	002087A	000153D	003566H	003612G	0032637	003352R	0032898	000151P	003228K	000206A	003370N 002115B	003268H	003639R	0029728	003638J	003621F	000122E	003347U	1950200	0020886	002085L	000142R

RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION RESULTS BASED ON PREDICTED FATAL ACCIDENTS FOR (STATE) TOTAL BUDGET: \$ 3000000 WARNING DEVICE P-->FL P-->G FL-->G COST: \$43800. \$55300. \$58700.

COST: 4.3000. 55500. 555700. 557		BASED ON PRI TOTAL BUDGET WADNING D	EDICTED COM F([: \$ 300C	ABINED CA JR (STATE 0000 2>EI	NSUALTY I () B>G	NDEX C.C.I*					
XTENDED EFFECTIVENESS VALUES: TAINS >= 11 PERDE STATINS >= 11 PERDE STATINS >= 11 PERDE STATINS >= 11 SETVE = FL T5 ASSTVE = FL T0TAL ASSTVE T0TAL ASSTVE T0TAL ASSTVE T0TAL ASSTVE T0TAL ASSTVE T0TAL ATT T0TAL ATT <th></th> <th>COST :</th> <th></th> <th>43800.</th> <th>\$65300.</th> <th>\$58700.</th> <th></th> <th></th> <th></th> <th></th> <th></th>		COST :		43800.	\$65300.	\$58700.					
ASSTVE FL TF 65 61 57 ASSTVE - G .00 .65 .61 .73 ASSTVE - G .00 .65 .61 .73 LASHING - G .00 .65 .61 .73 ANNING Antic Decision .61 .73 .61 ANNING Antic Decision .61 .61 .73 ANNING Antic CONSULATIVE REDUCED Decision .61 ANTIC DEVICE TRACKS TAT .61 .73 .61 ANTIC DEVICE TRACKS TAT .61 .61 .61 ANTIC CHONSBUCK 1 .63 .73 .63 .63 .73 ANTIC CHONSBUCK 1 .63 .73 .63 .61 .67 ANTIC CHONSBUCK 1 .63 .73 .63 .401 .401 ANTIC CHONSB		EXTENDED EFF UPGRADE OPTION	FECTIVENES TRAIN SINGLE TRACK	S VALUES: 45 <= 10 MULTIF TRACK	T PLE SING TRAC	RAINS >= 11 LE MULTI X TRACK	PLE				
Merione Merione Anning Present Comulative anning Total of anning Total of anning Total anning Total anning </th <th></th> <th>ASSIVE - FL ASSIVE - FL ASSIVE - G LASHING - G</th> <th></th> <th>. 65 . 65 . 65</th> <th>. 80 . 80 . 80</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		ASSIVE - FL ASSIVE - FL ASSIVE - G LASHING - G		. 65 . 65 . 65	. 80 . 80 . 80						
ATT CROSSBUCK 1 3 366775 2.42 0.43 3.3 ATT LIGHT 1 5 131 3.866775 2.42 3.3 3.3 3.3 3.66775 3.33 3.66775 3.33 3.66775 3.33 3.66775 3.33 3.66775 3.33 3.66775 3.33 3.66775 3.33 3.67173 9.670 3.73 3.554231 3.63 3.33 3.73 3.554231 3.74 4.01 <t< td=""><td>N KC</td><td>OMMENDED ARNING</td><td>PRESENT WARNING</td><td>TOTAL # OF</td><td>TOTAL # OF</td><td>CUMULATIVE</td><td>CUMULATIVE REDUCED C.C.I.*</td><td>DECISIO</td><td>ON CRIT</td><td>ERIA VA</td><td>LUES</td></t<>	N KC	OMMENDED ARNING	PRESENT WARNING	TOTAL # OF	TOTAL # OF	CUMULATIVE	CUMULATIVE REDUCED C.C.I.*	DECISIO	ON CRIT	ERIA VA	LUES
ATE CROSSBUCK 15 65 2.036027 193 3.44 ATE CROSSBUCK 15 131 3.66755 2.42 133 3.44 ATE CROSSBUCK 15 3.13 13 5.39900 3.44 ATE CROSSBUCK 15 3.18 13 5.39900 3.44 ATE LIGHT 1 15 3.33 9.530423 .401 .451 ATE LIGHT 2 2.31 9.530423 .401 .451 ATE LIGHT 2 2.31 9.530423 .401 .401 .555 ATE LIGHT 2 2.315464 .411 .411 .411 ATE LIGHT 2 3.9514 .411 .411 .411 ATE LIGHT 2.2 3.93332 .417 .111 .411 ATE LIGHT 2.2 3.933332 .417 .117 .411 ATE LIGHT		EVICE		TRACKS	1 KAINS	(\$ i HOUSAND)	PER YEAR				
ATE CROSSBUCK 1 3 165755 242 593 33 33 365555 242 593 33 33 365 37 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 373 365 367 373 365 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373 367 373<	G	ATE	CROSSBUCK	-	15	65	2.036027	. 193	.474		
TTE Light 15 248 6.791773 6.0 737 17.73345 6.0 737 17.73345 6.0 737 17.73345 6.0 7.73 6.0 7.73 6.0 7.73 6.0 7.73 7.73 6.0 7.73 6.0 7.73 6.0 7.73 6.0 7.73 6.0 7.73 6.0 7.73 7.40 7.37 7.40 7.37 7.40 7.37 7.40 7.37 7.40 7.	99	TE TE	CROSSBUCK		n a	131	3.866755 5 300000	. 242	. 593		322
Iff CROSSBUCK 1 5 313 8 254221 268 660 Iff LIGHT 1 10 372 9 533497 401 455 Iff LIGHT 2 27 372 9 530089 400 401 455 Iff LIGHT 2 27 515 11 553491 401 455 Iff LIGHT 1 17 14 6179 14 6179 401 455 Iff LIGHT 1 737 15 455 17 109 403 47 417 417 417 417 417 417 417 418 414	59	16	LIGHT		٥Ť	248	6.791779				. 275
It Lush 10 3/2 9.530083 401 385 It Light 1 1 1 1 455 41 401 455 It Light 1 1 1 1 555 11.853497 401 401 455 It Light 1 1 673 15.655 13.65095 403 10.03 555 It 10 737 15.65893 403 10.03 557 It 10 737 15.465894 671 141 571 It 10 737 15.465933 671 161 573 It 103 10.33332 477 1.171 973 573 It CR05SBUCK 1 22 920 17.1933322 477 1.177 It CR05SBUCK 1 1 843334 671 1.673 573 It CR05SBUCK 1 1	GA	21	CROSSBUCK	.	15	313	8.254221	. 269	. 660		100
T Light 2 73 155 11.853497 457 457 T Light 2 27 555 12.766152 42.766152 42.766152 T Light 1 1 1 1 555 12.766152 42.766152 T Light 1 1 1 1 679 14.611598 400 1.003 T Light 1 10 796 15.465943 679 14.611598 473 T 10 796 15.4513446 7 171 14.8133446 T 10 796 17.933822 477 1.171 48 T CR0SSBUCK 7 1029 19.23703 677 171 T CR0SSBUCK 7 1029 19.23703 677 177 T CR0SSBUCK 7 1029 12.1777 677 177 T CR0SSBUCK 7 1029 12.1777	GAI	m ir	CROSSBUCK	- a	₽≎	372	9.530089 10 773346			401	. 387
LIGHT 2 27 555 12.756152 533 12.756152 533	EA B	ı'n	LIGHT	o ~ -	<u>i</u> eo	496	11.853497			2	. 457
E LIGHT 12 613 13.650092 409 1.003 E LIGHT 1 14 673 15.650032 409 1.003 E LIGHT 1 737 15.461598 409 1.003 571 E LIGHT 1 737 15.461598 409 1.003 571 E CROSSBUCK 1 23 855 17.933827 477 1.171 E CROSSBUCK 1 2 9970 17.933827 477 1.171 E CROSSBUCK 1 4 100347 561 673 573 E CROSSBUCK 1 4 100347 567 673 573 E LIGHT 2 147 20.032102 673 673 673 HT CROSSBUCK 6 1147 20.703502 674 1673 673 673 HT CROSSBUCK 8 1147 20	GAT	ı س	LIGHT	0	27	555	12.756152				. 530
CrossBuck 1 737 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 15.465894 700 17.933332 477 1.171 488 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 171 171 148 173 171 171 148 171 171 148 171 <t< td=""><td>GAT CAT</td><td>in ir</td><td>LIGHT</td><td></td><td>12</td><td>613 670</td><td>13.650092</td><td></td><td>1 003</td><td></td><td>. 428</td></t<>	GAT CAT	in ir	LIGHT		12	613 670	13.650092		1 003		. 428
LIGHT 10 796 16.319416 17.1 17.1 LIGHT 1 22 920 17.939382 477 1.171 HT CROSSBUCK 1 22 920 17.939382 477 1.171 HT CROSSBUCK 1 22 920 17.939382 477 1.171 E CROSSBUCK 1 48.483134 677 1.481 E CROSSBUCK 2 7 1029 19.299703 677 LIGHT 2 964 18.483134 677 1.711 HT CROSSBUCK 6 1212 21.574791 679 1.673 HT CROSSBUCK 1 8 1212 21.574791 679 1.673 HT CROSSBUCK 1 8 1212 21.574791 679 1.673 HT CROSSBUCK 1 1 1446 22.155743 670 1.765 LIGHT 1 27	GAT	س	LIGHT		<u>, ,</u>	737	15.465894	201	<u>.</u>		.578
TI 7000000000000000000000000000000000000	GATI		LIGHT		9 ç	796 965	16.319416				.579
HT CROSSBUCK 1 64 18.483134 671 1.647 E LIGHT 1 4 1029 19.299703 671 673 E LIGHT 1 4 1088 20.032102 677 673 E LIGHT 2 8 1147 20.033102 677 673 HT CROSSBUCK 2 8 11272 21.574791 677 677 HT CROSSBUCK 1 8 1212 21.574791 679 677 HT CROSSBUCK 1 8 1212 21.574791 679 1.673 HT CROSSBUCK 1 8 1212 21.574791 676 1.723 HT CROSSBUCK 1 8 1300 22.655132 686 1.683 677 672 HT CROSSBUCK 1 2 1465 24.406511 702 1.722 1.772 1.772 1.778 676 <td>GAT</td> <td>uu</td> <td>CROSSBUCK</td> <td>- +-</td> <td>22</td> <td>920</td> <td>17.933832</td> <td>.477</td> <td>1.171</td> <td></td> <td></td>	GAT	uu	CROSSBUCK	- +-	22	920	17.933832	.477	1.171		
E LIGHT 1 4 1023 1147 20.032102 677 HT CROSSBUCK 2 8 1147 20.763553 677 677 HT CROSSBUCK 2 6 1212 21.574791 679 1666 HT CROSSBUCK 6 1212 21.574791 679 1.666 677 HT CROSSBUCK 1 6 1212 21.574791 679 1.666 677 HT CROSSBUCK 1 6 1212 21.574791 679 1.666 677 HT CROSSBUCK 1 6 1230 22.655132 686 1.683 701 HT CROSSBUCK 1 8 1402 23.884557 702 1.722 HT CROSSBUCK 1 8 1402 23.884557 702 1.722 HT CROSSBUCK 1 8 1402 25.101855 707 1.723 LIGHT 1 27 1505 25.101855 702 1.724 774		토	CROSSBUCK	÷ (0 I	964 1000	18.483134	.671	1.647	660	
TE LIGHT 2 8 1147 20.763553 677 677 TE CROSSBUCK 2 6 1212 21.574791 679 1.666 677 GHT CROSSBUCK 1 6 1212 21.574791 679 1.666 677 GHT CROSSBUCK 1 6 1212 21.574791 70 1.775 677 677 GHT CROSSBUCK 1 6 1216 22.117775 686 1.683 70 GHT CROSSBUCK 1 8 1350 22.660697 702 1.722 GHT CROSSBUCK 1 8 1402 23.884557 702 1.722 GHT CROSSBUCK 1 8 1446 24.406511 706 1.733 GHT CROSSBUCK 1 6 1.733 551 GHT CROSSBUCK 1 2 1.721 777 1.722 CROSSBUCK	4 g		LIGHT	N - -	- 4	1088	20,032102			5/0.	.674
TE CROSSBUCK 2 6 1212 21.574791 679 1.666 677 GHT CROSSBUCK 1 6 1256 22.117775 679 1.666 677 GHT CROSSBUCK 1 6 1358 22.117775 679 1.666 677 GHT CROSSBUCK 1 8 1358 22.3384557 702 1.722 GHT CROSSBUCK 1 8 1402 23.884557 702 1.722 GHT CROSSBUCK 1 8 1402 23.884557 702 1.722 GHT CROSSBUCK 1 8 1402 23.884557 702 1.722 GHT CROSSBUCK 1 8 1446 24.406511 706 1.733 GHT CROSSBUCK 1 1 27 1724 1.733 GE LIGHT 1 1 1 1 1724 1.734 CROSSBUCK	GA	LE	LIGHT	2	00	1147	20.763553				675
AFT CROSSBUCK 1 <td< td=""><td>g</td><td>TE SUT</td><td>CROSSBUCK</td><td>~ ~</td><td>u u</td><td>1212</td><td>21.574791</td><td>000</td><td>1000</td><td>.677</td><td></td></td<>	g	TE SUT	CROSSBUCK	~ ~	u u	1212	21.574791	000	1000	.677	
If LIGHT 1 8 1358 23.359458 702 722 BHT CR0SSBUCK 1 8 1402 23.884557 702 1.722 BHT CR0SSBUCK 1 8 1402 23.884557 702 1.722 BHT CR0SSBUCK 1 8 1446 24.406511 706 1.733 FE LIGHT 1 27 1505 25.101855 727 1.784 FE LIGHT 1 27 1505 25.608697 727 1.784 FE LIGHT 1 10 1548 26.912847 774 1.899 FE LIGHT 2 27 1724 27.555518 773 773 FE LIGHT 1 27 1724 27.555518 774 1.899 AHT CR0SSBUCK 1 56 26.912847 774 1.899 596 FE LIGHT 1 77 27.74 1.899 596 596 FE LIGHT 1	Ë	CHT CHT	CROSSBUCK		bю	1300	22.655132	689.	1.683		
AHI CKUSSBUCK 1 8 1402 23.884557 702 1.722 AHT CK0SSBUCK 1 6 1446 24.406511 706 1.733 AHT CR0SSBUCK 1 6 1446 24.406511 706 1.722 AHT CR0SSBUCK 1 1 27 1505 25.101855 727 1.784 AHT CR0SSBUCK 1 4 1607 26.262525 737 1.784 FE LIGHT 2 27 1566 26.912647 774 1.899 AHT CR0SSBUCK 1 27 275.555518 777 1.784 776 FE LIGHT 2 27 1724 27.555518 777 1.899 596 AHT CR0SSBUCK 1 77 1.899 774 1.899 596 AHT CR0SSBUCK 1 77 1.899 597 596 AHT CR0SSBUCK 1 1917 29.600222 647 1.587 507 AHT	Ϋ́Ο.	1	LIGHT	-	80 1	1358	23.359458				.701
TE LTGHT 1 27 1505 25.101855 17.784 15.75 GHT CR0SSBUCK 1 0 1548 25.608697 727 1.784 755 TE LIGHT 1 0 1548 25.608697 727 1.784 755 TE LIGHT 2 27 1666 26.912647 1.784 775 TE LIGHT 2 27 1764 27.555518 774 1.899 776 GHT CR0SSBUCK 1 15 1724 27.555518 774 1.899 591 GHT CR0SSBUCK 1 15 1871 29.1368916 760 591 GHT CR0SSBUCK 1 15 1871 29.1368916 788 1.934 GHT CR0SSBUCK 1 14 1915 29.600222 647 1.587 GHT CR0SSBUCK 1 14 1973 30.20988 1.934 601 GHT CR0SSBUCK 1 14 1973 30.20907124 1.5	35	GHI			» œ	1402 1446	23.884557 24 406511	20/	1.722		
GHT CROSSBUCK 1 10 1548 25.608697 727 1.784 TE LIGHT 1 4 1607 26.262525 737 1.784 TE LIGHT 1 2 1666 26.912647 736 736 TE LIGHT 1 27 1724 27.955518 774 1.899 GHT CROSSBUCK 1 6 1724 27.555518 774 1.899 GHT CROSSBUCK 1 15 1871 29.136670 788 1.934 GHT CROSSBUCK 1 14 1915 29.000222 647 1.587 GHT CROSSBUCK 1 14 1973 30.220988 .601 .601 TE LIGHT 1 1915 29.600222 .647 1.587 .601 GHT CROSSBUCK 1 1973 30.220988 .601 .601 TE LIGHT 1 1973 30.220988 .601 .611 CROSSBUCK 1 15 2082<	9	TE	LIGHT		27	1505	25.101855	2			. 551
TE LIGHT 1 4 1607 26.262525		GHT	CROSSBUCK	-	<u>6</u>	1548	25.608697	.727	1.784		.
TE L1401 Z Z 1724 Z 25518 774 1.899 TE L1GHT 1 27 1724 27.555518 774 1.899 596 TE L1GHT 1 57 1724 27.555518 774 1.899 596 TE L1GHT 1 15 1827 28.668916 788 1.934 GHT CR0SSBUCK 1 15 1871 29.136670 788 1.934 GHT CR0SSBUCK 1 14 1915 29.600222 647 1.587 GHT CR0SSBUCK 1 14 1973 30.220988 .601 .611 TE L1GHT 1 14 1973 30.220988 .601 .601 TE CR0SSBUCK 1 15 2039 30.907124 .801 .611	88			~ (4 1	1607	26.262525 26.262525				. 755
HT CR05SBUCK I G 1768 28.031730 774 1.899 E LIGHT 1 15 1827 28.668916 774 1.899 HT CR05SBUCK 1 15 1827 28.668916 774 1.899 HT CR05SBUCK 1 7 1871 29.136670 788 1.934 HT CR05SBUCK 1 14 1915 29.600222 647 1.587 60 E LIGHT 1 1973 30.220988 30.907124 .601 E CR05SBUCK 1 15 2039 30.907124 .601 .601 HT CR05SBUCK 1 15 2082 31.350413 .676 1.659 .801	GAT	цп	L I GHT	4 -	27	1724	27.555518				ຳ ອີຊີ - ອີຊີ
E LIGHT 1 15 1827 28.668916 .60' SHT CROSSBUCK 1 7 1871 29.136670 788 1.934 SHT CROSSBUCK 1 7 1871 29.136670 788 1.934 SHT CROSSBUCK 1 14 1915 29.600222 647 1.587 F LIGHT 1 14 1973 30.220988 .601 .61 F CROSSBUCK 1 14 1973 30.907124 .801 .61 F CROSSBUCK 1 15 2039 30.907124 .801 .61 F CROSSBUCK 1 15 2082 31.350413 .676 1.659 .801	Ľ	HT	CROSSBUCK	· -	9	1768	28.031730	.774	1.899		
SHT CROSSBUCK 1 7 1871 29.136670 788 1.934 SHT CROSSBUCK 1 14 1915 29.600222 647 1.587 SHT CROSSBUCK 1 14 1915 29.600222 647 1.587 FE LIGHT 1 14 1973 30.220988 .611 FE CROSSBUCK 2 6 2039 30.907124 .601 FE CROSSBUCK 1 15 2082 31.350413 .676 1.659	GAT	Ш	LIGHT	-	15	1827	28.668916				.601
GRI CR055BUCK 1 14 1915 29,600222 54/ 1,58/ 61/ TE LIGHT 1 14 1973 30,220988 61 61/ TE CR055BUCK 2 6 2039 30,907124 801 61/ GHT CR055BUCK 1 15 2082 31,350413 676 1,659	5		CROSSBUCK	- - 1		1871	29.136670	. 788	1.934		
TE CROSSBUCK 2 6 2039 30.907124 801 GHT CROSSBUCK 1 15 2082 31.350413 .676 1.659	52	6H1 Te		- +	4 F	1915 1972	29,600222	.647	1.96.1		6 T T
GHT CROSSBUCK 1 15 2082 31.350413 .676 1.659	50	TE	CROSSBUCK	- 9	<u>י</u> 0	2039	30.907124			. 801	5
	-	IGHT	CROSSBUCK	-	ŧ	2082	31.350413	.676	1.659	ſ	

RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION RESULTS

(COMBINED CASUALTY INDEX REDUCTION)

1 REJUDICE ALLOCATION E J-6. SAMPLE 500

ALLOCATION RESULT		_
HIGHWAY CROSSING RESOURCE	ED ON PREDICTED ACCIDENTS	EDD (CTATE

S

RESUI				۲S
ALLOCATION		_		P9G F
ING RESOURCE	ACCIDENTS	FOR (STATE)	3000000	P>FL
CROSS	ICTED		69	VICE
II GHWAY	ON PRED		BUDGET:	NING DE
RAIL-H	BASED		TOTAL	WAR

\$58700 . 83 \$65300. .70 STANDARD EFFECTIVENESS VALUES: \$43800. COST:

69

537 552 580 593 626 643 643 819 825 833 836 858 868 873 874 325 334 416 758 774 774 774 786 786 788 788 734 737 294 DECISION CRITERIA VALUES **D**C 4 ł . 408 .812 50 .892 1.126 1.130 1.826 1.890 .719 194 1.546 1.974 2.249 781 2.138 641 1 22 2 585 809 242 337 426 691 715 747 830 . 851 272 428 674 5 CUMULATIVE REDUCED ACCIDENTS 0.429679 0.890248 1.278310 1.656335 2.066992 2.714182 3.045000 3.265956 4.167743 4.328733 4.541370 5.611178 5.742894 5.914842 6.086044 6.212105 6.378655 6.543308 6.706340 907093 4.743067 2.410708 3.486202 3.721375 3.949986 4.942787 . 335199 6.869284 7.029858 . 189839 .346935 463360 636310 .790327 7.943348 8.056805 **B.208250** 8.359124 8.469767 8.617145 474904 . 762481 051539 5.139111 PER YEAR -----. م CUMULATIVE COST (\$THOUSAND) 701 780 804 241 307 372 431 496 540 584 980 642 862 921 038 097 *TRAINS* TOTAL # OF ខ្លាល ភូតិសិ4 ២ 54 53 œ 2 4 27 2224 ŧ 4 *IRACKS* TOTAL # OF CROSSBUCK LIGHT LIGHT LIGHT LIGHT LIGHT CROSSBUCK CROSSBUCK CROSSBUCK LIGHT LIGHT CROSSBUCK CROSSBUCK CROSSBUCK LIGHT LIGHT CROSSBUCK CROSSBUCK CROSSBUCK CROSSBUCK CROSSBUCK CROSSBUCK CROSSBUCK CROSSBUCK PRESENT WARNING DEVICE LIGHT -IGHT LIGHT LIGHT RECOMMENDED WARNING DEVICE GATE GATE GATE GATE GATE GATE LIGHT LIGHT GATE LIGHT GATE GATE GATE GATE LIGHT LIGHT GATE GATE GATE LIGHT LIGHT LIGHT GATE LIGHT GATE LIGHT GATE ACCIDENT REDUCTION COST RATIO (ACC/\$MILL) 590352 579988 570263 526099 510703 475912 463569 340516 189616 111284 007203 929270 916552 8178095 837300 837300 .777379 .775870 .735495 .725405 676251 658106 648540 623791 .053121 .610942 .439942 .288769 . 263638 . 169916 044657 028455 006360 894573 894573 709856 675572 822437 436064 066131 606825 319916 344532 460742 σ ۰. ø . ا ທີ ເດ Ċ, ຕ e e N PREDICTED Accidents Per year 0.219486 0.218659 0.158062 0.213592 0.210632 0.209582 0.209341 0.340831 0.331321 0.315590 0.229986 0.308170 0.229314 0.547862 0.494767 0.414115 0.439817 0.398576 0.315651 0.315651 0.284528 0.284528 0.284186 0.199579 0.188165 0.249200 0.180086 0.241376 0.238628 0.236279 0.227675 0.166321 562409 289450 236150 232715 227675 208373 221769 0.162082 622723 554902 0.194678 0.248118 231857 223212 ö പ് ~ Ъ. ~ ö ~ ö CROSSING ID # 002778H 003640K 003566H 002973H 0035858 002713P 003638J 000341T 000509J 000151P 003229S 000206A 000692S 003612G 000213K 0029728 002081J 000124T 000120R 002087A 003395J 000223R 003655A 002090H 002121E 002085L 002980T 002088G 003631L 002124A 003467K 000153D 003232A 002126N 002981A 002119D 003639R 3853600 000196W 000118P 003648P 002773Y 002706E 002 153K

FIGURE 5-7. SAMPLE OUTPUT FROM RESOURCE ALLOCATION REPORT PROGRAM

(ACCIDENT REDUCTION, STANDARD EFFECTIVENESS VALUES)

			MEETS STOP SIGN RQMNT	ÛŇ	2	29	22	2	2		22	Q	ŝ	2 2		2	Dz	0N N	014	ON I	2 g	22	2 S	C N	2 Z	Q	ę	Ş	ÿ	Ŷ	9	QN	0Z	0z	29
			ALUES DC4 	. 282	. 254	396			. 360	_	. 502	514	6 4 3	5.55	.638	.656	. 655	6969.	.714	.557	100.	747			. 752	. 758	. 742	. 771	. 826	. 839			679	1/8.	000
			ERIA V DC3																																
			DN CRIT DC2 		ļ	. 820	. 896	1.094		.864			1.091								1 780	001.1	1.829	1.497							2.070	1.725			2.124
			DECISI(DC1 		1	. 253	. 283	. 446		. 352			444								730	24.	. 745	610	•	•					19 C C L	.703			. 865
			CUMULATIVE REDUCED ACCIDENTS PER YEAR	0.500544	0.930223	1 374145	2.126069	2.362047	2.685521 2.000521	3.307392	3.588267	3.862538	4.055085	4.534235	4.755060	4.969885	5.178617	5.381248	5.578622	5.774946	0.01/0.0	6 307139	6.448263	6.588554	6.776016	6.962544	7.146702	7.329579	7.500340	7.668318	7.793059	7.914802	8,077834	8.240778	8.362340 9 E2E107
ESULTS ->G 00.	>= 11 MULTIPLE TRACK	. 57 . 78 . 63	CUMULATIVE COST (\$THOUSAND)	59	117	183 241	307	351	409 475	540	599	657	701	818	877	936	362	1053	1112	1711	6771	1332	1376	1419	1478	1537	1596	1654	1713	2771	18 15	1859	1918	1977	2020
)CATION RE >G FL >0. \$5870	TRAINS SINGLE FRACK		tOTAL # OF TRAINS	80	<u>5</u> 1	5 P	22	លព្	1 <u>0</u> <u></u>	d fij	₽	4	40	0 cc	0	4	27	4	4 1	12	7	• «	9 4	22	5	2	27	8	60 (3 0 (N	14	4	27	- 4
CE ALLI TE) \$953(K IPLE	•	TOTAL # OF FRACKS	-	÷	- 0) -	.	- 6	n -	-			- ~	ı –	-	7	-					-	-	-	-	~	-			- 1		- '	- •	- +
3551NG RESOUR 150 ACCIDENTS 160 ACCIDENTS 160 (57A 160 (57A 160 (57A 160 (57A 160 (57A 160 (57A) 160 (57A) 170 (57A)	IVENESS VALUE TRAINS <= 1 (NGLE MULT ACK TRAC	 75	PRESENT WARNING DEVICE	LIGHT	LIGHT	L TGHT	CROSSBUCK	CROSSBUCK		CROSSBUCK	LIGHT		CROSSBUCK		LIGHT	LIGHT	LIGHT					I TGHT	CROSSBUCK	CROSSBUCK	LIGHT	LIGHT		LIGHT			CRUSSBUCK	CROSSBUCK			CRUSSBUCK
IL-HIGHWAY CRC Sed on Predict Fal Budget: 4 Warning Devic Cost:	rended effecti arade si tion tr	SSIVE - FL SSIVE - G SSIVE - G	RECOMMENDED WARNING DEVICE	GATE	GATE	GATE	GATE	LIGHT	GATE	GATE	GATE	GATE	CATE	GATE		GATE	LIGHT	LIGHT	GATE	GATE	GATE	GATE	GATE	GALE	14917		GATE	GATE	LIGHI GATE						
RA) BAS T01	EX1 0PG	PAS PAS	ACCIDENTS REDUCTION COST RATIO (ACC/\$MILL)	8.527157	7.319916	6.066612	8.081464	5.387630	5.169916 A garger1	4.883017	4.784919	4.672418	4.396058 A 788527	3.774107	3.781930	3.659706	3.555914	3.451978	3.362426	5.0445.0	3 333510	3.238443	3.222003	3.202999	3.193567	3.177647	3.137275	3.115458	2.909045	2.801032	2.84/8/1 7 770502	2.779522	2.777379	2.775870	2.775377
		·	PREDICTED Accidents Per year	0.582409	0.622723	0.547882	0.494767	0.314638	0.439817 0.414115	0.398576	0.315590	0.308170	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.340831	0.248118	0.241376	0.331321	0.227675	0.221769	0.2040200	0 194678	0.213592	0.188165	0.229986	0.210632	0.209582	0.292314	0.205480	0.191866	0.100/35	0.100321 ^ 100570	8/9881 0	0.238279	061957.0	0.152052 0 182885
			CROSSING ID #	002126N	002153K	000213K	0029728	003395J	0001241	000120R	003586H	000223R	00208/A	002778H	002708E	002713P	003840K	0003417	0002084	0030485	002980T	0021244	002981A	002973H	003467K	0001530	003655A	002125G	002/34H		OCCOUNT OF		0020886	0020315	00003334

(ACCIDENT REDUCTION, STOP SIGN CANDIDATE INDICATION)

RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION RESULTS POSSIBLE CANDIDATE CROSSINGS FOR STANDARD HIGHWAY STOP SIGNS FOR (STATE) * ALL CANDIDATES ARE SINGLE TRACK LOCAL HIGHWAY CROSSINGS

------REFER TO PARAGRAPH 8B-9 OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES FOR FACTORS TO BE CONSIDERED PRIOR TO MAKING STOP SIGN INSTALLATION DECISIONS

.......

CROSSING	PREDICTED	PRESENT	TOTAL	ANNUAL AVERAGE	CROSSING
# QI	ACCIDENTS PER YEAR	WARNING Device	TRAINS Per day	DAILY TRAFFIC	LOCATION URBAN/RURAL
			1		
000120R	0.398576	CROSSBUCK	15	1130	URBAN
000142R	0.134108	CROSSBUCK	15	150	RURAL
000139H	0.097773	CROSSBUCK	5	150	RURAL
000114M	0.087151	CROSSBUCK	24	830	URBAN
000115U	0.049283	CROSSBUCK	24	400	URBAN
000130W	0.047232	CROSSBUCK	ដ	100	RURAL
000129C	0.032680	CROSSBUCK	15	160	RURAL
000149N	0.028619	CROSSBUCK	15	100	RURAL
000148G	0.028619	CROSSBUCK	5	100	RURAL
003514R	0.027217	CROSSBUCK	26	ŋ	RURAL
000143X	0.026842	CROSSBUCK	15	80	RURAL
003512C	0.023792	CROSSBUCK	26	20	RURAL
003513J	0.019360	CROSSBUCK	26	10	RURAL
003508M	0.019360	CROSSBUCK	26	10	RURAL
003590J	0.014427	CROSSBUCK	25	ŋ	RURAL

FIGURE 5-9. SAMPLE OUTPUT FROM STOP SIGN PROGRAM (PREDICTED ACCIDENTS)

REFERENCES

- Hitz, J., ed., "Summary Statistics of the National Railroad-Highway Crossing Inventory for Public at Grade Crossings," FRA-RPD-78-20 (Washington, D.C.: Federal Railroad Administration, September 1978).
- Federal Highway Administration, Railroad-Highway Grade Crossing Handbook (Washington, D.C.: U.S. Department of Transportation, August 1978).
- Mengert, P., Rail-Highway Crossing Hazard Prediction Research Results, FRA-RRS-80-02 (Washington, D.C.: U.S. Department of Transportation, March 1980).
- Farr, E., and J. Hitz, "Accident Severity Prediction Formula for Rail-Highway Crossings," FHWA-RD-83/092 (Washington, D.C.: U.S. Department of Transportation, July 1984).
- Farr, E., "Rail-Highway Crossing Resource Allocation Model," FRA-RRS-81-001 (Washington, D.C.: U.S. Department of Transportation, April 1981).
- Heisler, J., and J. Morrissey, "Rail-Highway Crossing Warning Device Life Cycle Cost Analysis," FRA-RRS-80-003 (Washington, D.C.: U.S. Department of Transportation, 1980).
- Association of American Railroads, "Results of Maintenance Cost Study of Railroad-Highway Grade Crossing Warning Systems, Communications Signal Division." Annual Meeting, October 1982.
- Association of American Railroads, Economics and Finance Department, "Indexes of Railroad Material Prices and Wage Rates-Railroads of Class I" (Washington, D.C. Published Quarterly).
- Farr, E., and J. Hitz, "Effectiveness of Motorist Warning Devices at Rail-Highway Crossings," FHWA-RD-85-015 (Washington, D.C.: U.S. Department of Transportation, July 1984).

9i

- Morrissey, J., "The Effectiveness of Flashing Lights and Flashing Lights with Gates in Reducing Accident Frequency at Public Rail-Highway Crossings," FRA-RRS-80-005 (Washington, D.C.: U.S. Department of Transportation, March 1980).
- California Public Utilities Commission, "The Effectiveness of Automatic Protection in Reducing Accident Frequency and Severity at Public Grade Crossings in California," (San Francisco: State of California, June 30, 1974).
- 12. Manual on Uniform Traffic Control Devices, Sec. 8B-9, U.S. DOT, FHWA, 1983.
- National Highway Traffic Safety Administration, "The Economic Cost to Society of Motor Vehicle Accidents," U.S. Department of Transportation, Washington, D.C. 1983.
- Miller, T. et. al., "Alternative Approaches to Accident Cost Concepts: State of the Art," FHWA/RD-83/079, (Washington, D.C.: U.S. Department of Transportation, January 1984.)

.

APPENDIX A

.

.

·

.

C** Č* C* THIS PROGRAM CALCULATES PREDICTED ACCIDENTS USING C* THE BASIC FORMULA AND THE ACCIDENT HISTORY FORMULA. C* C* ADDITIONALLY, PREDICTED FATAL ACCIDENTS, INJURY ACCIDENTS AND A COMBINED CASUALTY INDEX ARE ALSO CALCULATED AND INCLUDED IN THIS OUTPUT. THE FATAL AND INJURY ACCIDENTS ALONG WITH COMBINED CASUALTY INDEX ARE C* C* C* C* C* C* COMPUTED BY THE SUBROUTINE CASLTY. INPUT MUST BE IN THE 54 CHARACTER FORMAT PLUS C* C* C* C* SEVEN YEARS OF ACCIDENT HISTORY. TOTAL CHARACTERS PER RECORD IS 68. UNIT 23 - INVENTORY INPUT FILE UNIT 20 - INVENTORY OUTPUT FILE WITH BASIC PRED. ACC., Final Pred. ACC., Also fatal and injury Accidents Along With combined casulty C* C* C* C* INDEX. C* UNIT 5 - SUMMARY OUTPUT FILE C* C* * С Ç PARAMETER AH=7 **! # OF YEARS OF ACCIDENT HISTORY AVAILABLE** С MUST CHANGE IF UPDATED С INTEGER ITEM1(5), YEAR, MONTH, OLDCL, NEWCL, NS, NT, DS, DT, SPEED INTEGER MTRKS, OTRKS, ITEM2, PAVE, LANES, FC10, FC1, AADT INTEGER ITEM3, ACC(AH), NREC, T, C, D, CLASS, TRAINS, TRACKS INTEGER THRU, SWITCH, URBAN(9), RURAL(9), HT, K, TA, CURYER, INDEX INTEGER OFFSET, I С REAL HTOT, FTOT, CTOT, ITOT, ATOT, XT1, XT2, XT3, XT4, XT5, XT6, X, H REAL EFFECT(12), EFF(6), N, TO, A, FATALK, FATAL, INJURY, CMBCAS С COMMON/FATCOM/SPEED, THRU, SWITCH, FC10, A, TRACKS, FATALK COMMON/FATC2/FATAL, INJURY, CMBCAS С DATA CURYER/82/ ! YEAR OF MOST CURRENT DATA - MUST CHANGE с с IF UPDATED DATA FATALK/50.0/ DATA (EFFECT(I), I=1,6)/.75,.90,.89,.61,.80,.69/ DATA (EFFECT(I),I=7,12)/.85,.86,.65,.57,.78,.63/ DATA (RURAL(I),I=1,9)/1,2,0,0,0,3,4,5,6/ DATA (URBAN(1), I=1,9)/1,2,0,3,0,4,5,0,6/ С С C* OPEN(UNIT=23, FILE= 'ACP.DAT') С С NREC=0 HTOT=0.0 FTOT=0.0 CTOT=0.0 ITOT=0.0 ATOT=0.0 Ç* C* READ DATA FROM TAPE C+ 00100 READ(23, 1000, END=900) ITEM1, YEAR, MONTH, OLDCL, NEWCL, STOPS, NS, NT, DS, DT, SPEED, MTRKS, DTRKS, ITEM2, PAVE, LANES, FC10, FC1, AADT, ITEM3, ACC 01000 FORMAT(5A4,212,311,412,13,11,12,A1,411,16,A2,712) С C C

o

 I_{i}

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM

TRAINS=NS+NT+DS+DT TRACKS=MTRKS+OTRKS THRU=NT+DT SWITCH=NS+DS T=TRAINS C=AADT D=DT CLASS=NEWCL C C * C * C * C C C **************************** * CALCULATE BASIC PREDICTED ± ACCIDENTS * ************** IF(YEAR.GT.77) CLASS=OLDCL IF(OLDCL.EQ.9) CLASS=NEWCL GD TO (200, 200, 200, 200, 300, 300, 300, 400), CLASS GD TO 100 C C C C C * CROSSBUCKS EQUATION C* DETERMINE HIGHWAY TYPE AND URBAN/RURAL Č* 200 IF(FC1.EQ.0) GO TO 220 IF(FC10.NE.0) GO TO 210 HT=RURAL(FC1) GD TO 230 IF(FC10.NE.1) GO TO 220 210 HT=URBAN(FC1) GO TO 230 220 HT=0 C* C* EQUATION Č* XT1=0.3839*ALOG10(C*T+0.2) ! EXPOSURE INDEX FACTOR 230 XT2=0.1538*AL0G10(D+0.2) ! THRU TRAIN FACTOR XT3=0.3080*PAVE ! HIGHWAY PAVED FACTOR XT4=0.003855*SPEED SPEED FACTOR r X75=0.04991+HT **HIGHWAY TYPE FACTOR** TRACKS FACTOR X78=0.1047+TRACKS X=XT1+XT2-XT3+XT4-XT5+XT6 H=0.00984+EXP(2+X) GO TO 500 CCCC FLASHING LIGHTS EQUATION 300 XT1=0.3400*AL0G10(C*T+0.2) ! EXPOSURE INDEX FACTOR XT2=0.05415*AL0G10(D+0.2) ! THRU TRAIN FACTOR XT3=0.05442*TRACKS ! TRACKS FACTOR XT4=0.06900+LANES 1 NUMBER HIGHWAY LANES FACTOR X=XT1+XT2+XT3+XT4 H=0.00551*EXP(2*X) GO TO 500 0000 GATES EQUATION č 400 XT1=0.3588*AL0G10(C+T+0.2) ! EXPOSURE INDEX FACTOR XT2=0.1458*TRACKS ! TRACKS FACTOR XT3=0.05180*LANES ! NUMBER HIGHWAY LANES FACTOR X=XT1+XT2+XT3 H=0.00162*EXP(2*X) c c

0

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (Cont.)
```
C*
C* C*
C* C*
C C*
C*
C*
           MODIFY FOR UPGRADES/DOWNGRADES BY EFFECTIVENESS *
        ±
        *
                                                           ٠
        CALCULATE WHICH EFFECTIVENESS VALUES TO USE
C*
 500
        IF(CLASS.EQ.NEWCL) GO TO 600
        OFFSET=0
        IF(TRACKS.GT.1) GOTO 425
        IF(TRAINS.GE.11) OFFSET=3
        GOTO 450
С
 425
        OFFSET=6
        IF(TRAINS.GE.11) OFFSET=9
C*
C*
                CALCULATE UPGRADE/DOWNGRADE EFFECTIVENESS VALUES
Ċ*
 450
        DO 475 INDEX=1.3
        EFF(INDEX)=1-EFFECT(INDEX+OFFSET)
                                                ! UPGRADE VALUES
                                                ! DOWNGRADE VALUES
 475
        EFF(INDEX+3)=1/EFF(INDEX)
C*
                MODIFY FOR UPGRADE/DOWNGRADE
C*
C*
        IF(OLDCL.GT.NEWCL) GO TO 550
        K=2
        IF(NEWCL.NE.8) K=1
IF(OLDCL.GT.4) K=3
        GO TO 555
 550
        K=5
        IF(OLDCL.NE.8) K=4
        IF(NEWCL.GT.4) K=6
 555
        H=H*EFF(K)
C*
            C*
                                                    *
Č*
           CALCULATE FINAL PREDICTED ACCIDENTS
        *
                                                    *
C*
        ×
                                                    ±
Ċ*
        ***************
C
C
C≭
                CALCULATE NUMBER OF ACCIDENT DATA YEARS
С
 600
        TA=CURYER-YEAR
        IF(TA.LT.O) TA=0
IF(TA.GT.5) TA=5
        T=TA
С
č
C≭
                CALCULATE NUMBER OF ACCIDENTS
С
        N=Q.
        IF(TA.EQ.0) GO TO 800
        DO 700 INDEX=AH, (AH-TA+1), -1
N=N+ACC(INDEX)
 700
C
C
Ç*
                CALCULATE FINAL PREDICTED ACCIDENTS
Ċ
 800
        TO=1./(.05+H)
        A=(H+TO+N)/(T+TQ)
С
С
```

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (Cont.)

C* C* C* C* C* C	**************************************
r	CALL CASLIN
00000	ACCUMULATE RECORD TOTALS
	HTOT=HTOT+H
	FTOT=FTOT+FATAL
	NREC=NREC+1
С	
č	WRITE DATA TO OUTPUT FILE
C	
	WRITE(20,2000) FATAL, INJURY, CMBCAS, A, H, ITEM1, YEAR, MONTH, OLDCL,
*	NEWCL, STUPS, NS, NT, DS, DT, SPEED, MTRKS, OTRKS, ITEM2, PAVE LANES ECTO ECT AADT ITEM2 ACC
02000 C	FORMAT(5F10.7,5A4,212,311,412,13,11,12,A1,411,16,A2,712)
С	
~	GD TO 100
0000	
C*	*******
C*	* VOLTE TOTALE TO TTY AND EVIT DOCEAN *
C*	* WRITE TOTALS TO THE AND EXIT PROGRAM *
Č* C	*************************************
900	WRITE(5,3500) FTOT,ITOT,CTOT,HTOT,ATOT,NREC
3500	FORMAT(' TOTAL FATAL PREDICTED ACCIDENTS = ',F10.3 /
*	TOTAL INJURY PREDICIED ACCIDENTS = ', FIO.3 /
*	/ TOTAL BASIC PREDICTED ACCIDENTS = /,F10.3 /
*	<pre>/ TOTAL FINAL PREDICTED ACCIDENTS = ',F10.3 /</pre>
*	<pre>/ TOTAL NUMBER OF CROSSINGS = ',I6)</pre>
C	
	CALL EXIT
С	
	END

.

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (Cont.)

```
SUBROUTINE CASLTY
             C*****
C*
Ç*
        THIS SUBROUTINE CALCULATES PREDICTED FATAL
C*
¢*
        ACCIDENTS , INJURY ACCIDENTS AND THE COMBINED
C*
        CASUALTY INDEX USING THE PREDICTED ACCIDENT
C*
        VALUE CALCULATED IN THE CALLING PROGRAM AND
C*
        VARIABLES PASSED THROUGH A COMMON STATEMENT.
C*
C*
C**
      ***************
С
č
        INTEGER TRACKS, THRU, SWITCH, SPEED, FC10
        REAL A, CI, CF, MS, TT, TS, UR, URB, FATL, FATAL, FATPRB
        REAL TRK, TK, INJ, INJURÉ, INJURÝ, CMBCAS, INJPRB
C
        COMMON/FATCOM/SPEED, THRU, SWITCH, FC10, A, TRACKS, FATALK
        COMMON/FATC2/FATAL, INJURY, CMBCAS
С
        DATA CI/4.280/
                               INJURY CONSTANT
                               ! FATALITY CONSTANT
        DATA CF/695.0/
С
С
C*
                 0000
                 FATAL ACCIDENT FORMULA
 100
        MS=POWER(SPEED, -1.074)
                                       ! SPEED FACTOR
                                       ! THRU TRAIN FACTOR
! SWITCH TRAIN FACTOR
        TT=POWER(THRU+1,-0.1025)
        TS=POWER(SWITCH+1,0.1025)
        URB=0.1880*FC10
        UR=EXP(URB)
                                       ! URBAN/RURAL FACTOR
        FATL=1+(CF*MS*TT*TS*UR)
                                       ! FATAL ACC. PROB. GIVEN AN ACC
        FATPRB=1/FATL
        FATAL=FATPRB*A
                                       ! PRED. FATAL ACCIDENTS
00000
                INJURY ACCIDENT FORMULA
        MS=POWER(SPEED, -0.2334)
 200
                                       I SPEED FACTOR
        TRK=0.1176*TRACKS
        TK=EXP(TRK)
                                       ! TRACKS FACTOR
        URB=0.1844*FC10
        UR=EXP(URB)
                                       ! URBAN/RURAL FACTOR
        INJ=1+(CI*MS*TK*UR)
        INJURE=1-FATPRB
        INJPRB=INJURE/INJ
                                       ! INJURY ACC. PROB. GIVEN AN ACC.
                                       PRED. INJURY ACCIDENTS
PRED. COMBINED CASUALTY INDEX
        INJURY=INJPRB*A
        CMBCAS=INJURY+FATAL*FATALK
С
Ç
 300
        RETURN
С
        END
```

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (Cont.)

	REAL FUNCTION POWER(BASE, EXPON)
C****	*******************************
C*	
Ċ*	
Č*	THIS FUNCTION EXPONENTIATES THE
Č*	GIVEN BASE TO THE GIVEN
Č*	POWER AND RETURNS
Č*	
Č*	
C****	******
č	
č	
-	INTEGER BASE
	REAL EXPON
С	
č	
C****	*********
Ċ	
č	
•	POWED = BASE + + FYDON
c	I OREN-BASE FERION
~	DETIION
c	REIGNIA
v	END

EXHIBIT A-1. ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (Cont.)

.

.

VARIABLE NAME	VARIABLE TYPE	DEFINITION
A		FINAL PREDICTED ACCIDENTS PER YEAR
AADT	I	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC
ACC	I	ACCIDENT HISTORY FOR 1976 THRU 1982
AH	I	NUMBER YEARS OF ACCIDENT HISTORY INPUT
ATOT	R	TOTAL PREDICTED ACCIDENTS FOR RUN
BASE	I	BASE NUMBER
C	R	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC
CURYER	T	YEAR OF MOST RECENT ACCIDENT HISTORY DATA
CF	R	FATALITY CONSTANT USED IN CALCULATING PREDICTED
CI	R	INJURY CONSTANT USED IN CALCULATING PREDICTED INJURY ACCIDENTS
CLASS	т	WARNING DEVICE CLASS USED TO CALCILATE H
CMBCAS	R	PREDICTED COMBINED CASUALTY INDEX
СТОТ	R	TOTAL PREDICTED COMBINED CASUALTY INDEX FOR RUN
D	T	NIMBER OF DAYLIGHT THRU TRAINS
- DT	Ť	NIMBER OF DAYLIGHT THRU TRAINS
DS	Ť	NIMBER OF DAYLIGHT SWITCH TRAINS
नन्त्र	B	EFFECTIVENESS MULTIPLIERS UPGRADE/DOWNGRADE
EFFECT	R	12 EXTENDED EFFECTIVENESS VALUES
EXPON	R	POWER TO WHICH BASE IS RAISED
FATAL.	R	PREDICTED FATAL ACCIDENTS PER YEAR
FATER	R	FATAL ACCIDENT PROBABILITY GIVEN AN ACCIDENT
FATALK	R	WEIGHTING FACTOR USED TO CALCULATE COMBINED CASUALTY INDEX
FC1	T	INITS DIDGET OF FUNCTIONAL CLASSIFICATION OF ROAD
FC10	T	TENS DIDGET OF FUNCTIONAL CLASSIFICATION OF ROAD
FTOT	⊥ R	TOTAL PREDICTED FATAL ACCIDENTS FOR RUN
H	R	BASIC PREDICTED ACCIDENTS PER YEAR = a
н т	T	HIGHWAY TYPE FACTOR
НТОТ	R	TOTAL BASIC PREDICTED ACCIDENTS FOR RUN
T	T	DO LOOP INDEX
TNDEX	Ť	DO LOOP INDEX
TNJURY	R	PREDICTED INIURY ACCIDENTS PER YEAR
TNIPRB	R	IN HIRY ACCIDENT PROBABILITY GIVEN AN ACCIDENT
TTEM1	Δ	HOLDS DATA THAT IS INPUT AND OUTPUT ONLY
TTEM2	Δ	HOLDS DATA THAT IS INPUT AND OUTPUT ONLY
TTEM3	A	HOLDS DATA THAT IS INPUT AND OUTPUT ONLY
TTOT	R	TOTAL PREDICTED IN HIRY ACCIDENTS FOR RUN
K	т	CATEGORY OF HEGRADE /DOWNGRADE
N .	-	1. PASSIVE TO FLASHING LIGHTS
		2. PASSIVE TO CATES
		3. FLASHING LIGHTS TO GATES
		4. FLASHING LIGHTS TO PASSIVE
		5. GATES TO PASSIVE
		6: GATES TO FLASHING LIGHTS
LANES	I	NUMBER OF HIGHWAY LANES

EXHIBIT A-2. VARIABLE DICTIONARY ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM

VARIABLE NAME	VARIABLE TYPE	DEFINITION
MONTH	I	MONTH OF CHANGE IN WARNING DEVICE
MTRKS	I	NUMBER OF MAIN TRACKS
MS	R	SPEED FACTOR CALCULATION
N	I	NUMBER OF ACCIDENTS IN T YEARS
NEWCL	I .	PRESENT WARNING DEVICE CLASS
NREC	I	TOTAL NUMBER CROSSINGS IN RUN
NS	I	NUMBER OF NIGHT SWITCH TRAINS
NT	I	NUMBER OF NIGHT THRU TRAINS
OFFSET	I	VALUE DETERMINES SET OF EXTENDED EFFECTIVENESS
		VALUES USED
OTRKS	I	NUMBER OF OTHER TRACKS
OLDCL	I	FORMER WARNING DEVICE
PAVE	I	IS HIGHWAY PAVED? 1: YES, 2: NO
RURAL	I	LOOKUP TABLE FOR RURAL HIGHWAY TYPES
SPEED	I	MAXIMUM TIMETABLE TRAIN SPEED
STOPS	I	NUMBER OF STANDARD STOP SIGNS ON SITE
SWITCH	I	NUMBER OF SWITCH TRAINS
Т	I	NUMBER OF YEARS OF ACCIDENT HISTORY USED IN
		CALCULATING PRED. ACC.
THRU	I	NUMBER OF THRU TRAINS
TK	R	TRACKS FACTOR CALCULATION
ТО	R	1/(.05+H) WEIGHTING FACTOR USED IN ACCIDENT PRED.
		FORMULA
TRAINS	I	NUMBER OF TRAINS
TRACKS	I	NUMBER OF TRACKS
TS	R	SWITCH TRAIN FACTOR
TT	R	THRU TRAIN FACTOR
UR	R	URBAN RUKAL FACTOR
URBAN	1 T	LOUKUP TABLE FOR UKBAN HIGHWAY IYPES
YEAR	T	YEAR OF CHANGE IN WARNING DEVICE CLASS

1

EXHIBIT A-2. VARIABLE DICTIONARY ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM (CONT)

SENT	IRNS. 15.		
rear Month Jass Press	U TRN U TRN M TRN TRNS	ACK5 ACK5 ACK5	
UMBER TY ADE Y EIGRECLENT CENT COL	T SWI T THA SWITC SWITC	D TRAC S CL/	
ID N STAT COUN COUN CUTY RAIL RAIL RAIL PRES STOP	NIGH DAY DAY	SPEE MAIN OTHE OTHE PAVE FUNC	AADJ 7 7 7 7 8 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 8 1 7 8 1 7 8 1 7 8 1 7
000102T390958120MIRR7001040	0010	61 021219	347406 0 0 0 0 0 0 0 0
000105N390958120MIRR7001040 000106V390958120MIRR7001070	0010	0 61 021219 0 61 021216	90906 0 0 0 0 0 0 0 0 661806 0 0 0 0 0 0 0 0
000108J390958120MIRR7001080	116 116	252 021216	661806 0 1 0 0 0 0 0
000110K390958120MIRR7001080 000112Y390958120MIRR7001080	719 719 015 015	i 252 021216 i 252 021217	463206 0 0 0 0 0 0 0 0 243506 0 0 0 0 0 0 0 0
000114M390958120MIRR7001040	012 012	451 021219	83006 0 0 0 0 0 0 0 0
0001150281154840MIRR7001040	0708	451 022219	175006 0 0 0 4 0 0 0
000119W261154840MIRR7001070	0708	451 021216	350007 0 0 0 0 0 0 0 0 0
000122E261154840MIRR7001040	0708	451 021219	261008 0 0 0 1 0 0 0
000124T261154840MIRR7001070	0708	451 021216	353007 0 0 0 2 0 0 1
000126G261154434MIRR7001070	0708	451 121207	296007 0 0 0 0 0 0 0 0
000128V261154434MIRR7001042	0708	451 021209	59005 0 0 0 0 0 0 0 16005 0 0 0 0 0 0 0 0
000130W261154434MIRR7001040	0708	451 021209	10005 0 0 0 0 0 0 0 0
000132K261154434MIRR7001042	0708	451 021209	24005 0 0 0 0 0 0 0 0 53006 0 0 0 0 0 0 0 0
000139H261151340MIRR7001040	0708	451 022209	15005 0 0 0 1 0 0 0
000140C261151340MIRR7001042 000142R261151340MIRR7001040	0708	451 021209	15005 0 0 1 0 0 0 0
000143X261151340MIRR7001040	0708	451 022209	
0001461261151340MIRR7001070	0708	451 021207	10005 0 0 0 0 0 0 0 0
000149N261151340MIRR7001040	0708	451 022209	
000152W261151340MIRR7001040	0304	401 021209	10005 0 0 0 0 0 0 0 0
000153D261151340MIRR7001070	0304	401 021206	850009 0 0 0 0 1 0 0 170005 0 0 0 0 0 0 0 0
000155S261151340AA 7001040	0000	400 121209	44005 0 0 0 0 0 0 0 0
000155Y251151340AA 7001040	0000	0 400 121209 401 022209	40005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000159U281151340MIRR7001040	0304	401 022209	6005 0 0 0 0 0 0 0 0
000160N261151340MIRR7001040 000163J261150239MIRR7001040	0304	401 022209	6005 0 0 0 0 0 0 0 0 7005 0 0 0 0 0 0 0 0
000164R261150239MIRR7001060	0304	401 021207	67006 0 0 0 0 0 0 0 0
000165X261150239MIRR7001040 000167L261150239MIRR7001040	0304	401 022109	12005 0 0 2 0 0 0 0
000170U261150239MIRR7001040	0304	401 022209	
000172H261153250MIRR7001040	0101	251 021217	12006 0 0 0 0 0 0 0 0
000174W261153250MIRR7001070	0101	251 021219	10005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000176K261613250MIRR7001070	0202	451 021207	12007 0 0 0 0 0 0 0 0
0001775261613250MIRR7001042 0001816261613250MIRR7001042	0202	451 022209	5005000000000 800600000000
000182N261613250MIRR7001042	0202	451 021209	8005 0 0 0 0 0 0 0 0
000183V261613250MIRR7001070 000184C251613250MIRR7001040	0202	451 021207	6005000000000
000186R261613250MIRR7001070	0202	451 021207	
000187X261613250M1RR7001042 000190F261610150MIRR7001042	0202	451 022209	4005 0 0 0 0 0 0 0 0
000192U261510150MIRR7001042	0202	451 022208	
000194H281610150AA 7001042	0101	51 022209	5005 0 0 0 0 0 0 0 0
000195P261614430AA 7001040	0101	51 022209	5005 0 0 0 0 0 0 0 0 700007 0 0 0 0 1 0 0
000198K281614430AA 7001010	0000	50 121209	50005 0 0 0 0 0 0 0 0
0001995261614430AA 7001042 000202X261614430AA 7001040	0101	151 022208	20006 0 0 0 0 0 0 0 15005 0 0 0 0 0 0 0 0
000203E261614430AA 7001040	0101	51 021209	273005 0 0 0 0 0 0 0
000204L261614430AA 7001040	0000	451 121207	

.

EXHIBIT A-3. SAMPLE INPUT TO ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM

DATA FIELD	COLUMN	LENGTH	DATA TYPE*	FIELD DESCRIPTION
1	1	7	А	CROSSING ID NUMBER
2	8	2	I	STATE FIPS CODE
3	10	3	I	COUNTY FIPS CODE
4	13	4	I	CITY FIPS CODE
5	17	4	A	FRA RAILROAD CODE
6	21	4	I	YEAR AND MONTH OF LAST CHANGE IN WARNING DEVICE
7	25	1	I	FORMER WARNING DEVICE CLASS
8	26	1	I	PRESENT WARNING DEVICE CLASS
. 9	27	1	I	STANDARD STOP SIGNS
10	28	2	I	NUMBER NIGHT SWITCH TRAINS
11	30	2	I	NUMBER NIGHT THRU TRAINS
12	32	2	I	NUMBER DAYLIGHT SWITCH TRAINS
13	34	2	I	NUMBER DAYLIGHT THRU TRAINS
14	36	3	I	MAXIMUM TIMETABLE TRAIN SPEED
15 ·	39	1	I	NUMBER MAIN TRACKS
16	40	2	I	NUMBER OTHER TRACKS
17	42	1	I	DO PASSENGER TRAINS OPERATE OVER CROSSING? 1: YES 2: NO
18	43	1	I	IS HIGHWAY PAVED? 1: YES, 2: NO
19 ·	44	1	I	NUMBER OF TRAFFIC LANES
20	45	2	Ι	FUNCTIONAL CLASSIFICATION OF ROAD
21	47	6	I	ESTIMATED ANNUAL AVERAGE DAILY TRAFFIC
22	53	2	I	ESTIMATED PERCENT TRUCK TRAFFIC
23	55	2	I	NUMBER OF ACCIDENTS IN 1976
24	57	2	I	NUMBER OF ACCIDENTS IN 1977
25	59	2	Ι	NUMBER OF ACCIDENTS IN 1978
26	61	2	I	NUMBER OF ACCIDENTS IN 1979
27	63	2	I	NUMBER OF ACCIDENTS IN 1980
28	65	2	I	NUMBER OF ACCIDENTS IN 1981
29	67	2	I	NUMBER OF ACCIDENTS IN 1982

*DATA TYPE:

A - Alphanumeric I - Integer

EXHIBIT A-4. INPUT DATA FIELD DESCRIPTION FOR THE ACCIDENT AND CASUALTY PREDICTION PROGRAM

.32 ACC.	000100000000000000000000000000000000	>
.32A [8		2
.00A 08		,
204.67		<u> </u>
,00A ((•
JJV 22		Ś
114 AT		Ś
ADIAT *		3
IUAA	<u> </u>	>
		ı
FUNC. CLASS		2
LANES PAVE		4
AMTRAK AMTRAK		•
APIN TRACKS		-
2 bee 0	40044646464444046444646464466666666666	;
.2ИАЯТ ОЯНТ ҮАС	_ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	3
.2NAAT HOTIW2 YAO	+00000-00000000000000000000000000000000	•
.ZNAXI ,UXHI 1H2[N	<u>_</u> คพงคครงพบดีสองพบิสตีงที่องของดีครีที่ดีงสองรองององคะคงดีสองพบสรงสอง _{ที})
NICHI 2MIICH IBNS.	+000000000000000000000000000000000000	>
2106 ZIGNZ BEEZENL		>
FORMER CLASS		2
HINOM JOARDAU		\$
AAAY JOARDAU	X X X X X X X X X X X X X X X X X X X	
0A0AJIAA		1
		5
CITY CITY	842088008000088040808468088800080080080084848484	\$
		5
COUNTY COUNTY		\$
JTA T2	300000080088080800800000800008800	3
	21-C-22-C-22-C-22-C-22-C-22-C-22-C-22-C	}
ал инжек		1
		ξ.
	- 40800/048000000000000000000000000000000	í.
	001 001 001 001 001 001 001 001	į
ACCIDENTS PREDICTED	30,20,20,20,20,20,20,20,20,20,20,20,20,20	j
DISA8	NOTN-N4NNM-NNNM-NNNNN-NNNN-O-D-D-D-D0000-01NNNNNNNNNNNNNNNNNNNNNNNNN	ł.
		•
	C4000000000000000000000000000000000000	4
SING ICON	000000000000	i
PREDICTED		i.
10/013		2
		, ,
	24 14 14 14 14 14 14 14 14 14 14 14 14 14	Ę
X 30N I		Ś
VT JAU SAC	900 0 80 0 8 4 4 7 0 7 0 4 0 8 0 8 0 8 0 8 0 8 0 8 0 0 7 0 7 0 7 0	i
	- ₩0₩+₩0₩0+₩0₩4+₩₩0+₩0₩0+0+4000040+4++0000+400₩0440+4	r
	8080404940404040404040404040404040404040	>
N2011 110011	000000000000000000000000000000000000000	5
A RULE V RULE	4 100	5
		;
		2
ACCIDENTS	\$0000000000000000000000000000000000000	:
IATAR CREDICES	999999999999999999999999999999999999999)
		,
	-	

EXHIBIT A-5. SAMPLE OUTPUT FROM ACCIDENT AND CASUALTY PREDICTION FORMULA PROGRAM

C***	* * *	**************
C*		
Ç*		THIS PROGRAM PRINTS THE OUTPUT OF THE ACCIDENT AND
C*		CASUALTY PREDICTION FORMULA PROGRAM IN REPORT FORMAT
C*		THIS PROGRAM GENERATES ONE OF THREE POSSIBLE REPORTS
C*		UPON EXECUTION. THE FIRST REPORT IS A RANKING
Č*		OF CROSSINGS BY FINAL PREDICTED ACCIDENTS THE
~~		SECOND BY EATAL ACCENTER AND THE THIRD BY
		SECOND DE FATAL ACCIDENTS, AND THE THIRD BY
C.*		COMBINED CASUALTY INDEX. BEFORE EXECUTION OF
C*		THIS PROGRAM THE INVENTORY INPUT DATA FILE MUST BE SORTED
C*		IN DESCENDING ORDER ON THE FIELD THE USER WISHES
C*		CROSSINGS TO BE RANKED BY. IF THE INPUT FILE IS
C*		NOT SORTED ON THE CORRECT FIELD THE RANKED
Ċ*		DUTPUT RESULTS WILL NOT BE ACCURATE
-		
•		
C*		
C*		UNIT 20 - INVENTORY INPUT FILE WITH FINAL PREDICTED
Ç*		ACCIDENTS
C*		UNIT 21 - REPORT OUTPUT FILE
C*		
Č***	***	*************
C++++		
5		
C		
С		
		PARAMETER AH=7 ! # OF YEARS OF ACCIDENT HISTORY AVAILABLE
С		
		INTEGER ID(2) STATE ISTATE(56) COUNTY CITY REGAD
	×	YEAD MONTH OLDEL NEWEL STOPS NS NT DS DT
	1	SPEED, MIRKS, UIRKS, AMIRAK, PAYED, LANES, PUID,
	*	FC1, AADT, TRUCKS, ACC(AH), PAVE(2), PAGE, RANK,
	*	DAY(2),THRU,SWIT,TRAINS,TRACKS,TITLE(3)
	*	, CHDICE
С		
•		REAL FATAL INJURY A H.CMBCAS AC
c		
C		
		DATA PAVE/ YES , NU /
		DATA ISTATE//AL/,'AK/,' ', 'AZ','AR','CA',' ','CO','CT','DE',
	1	'DC','FL','GA',' ','HI','ID','IL','IN','IA','KS',
	2	<pre> KY', 'LA', 'ME', 'MD', 'MA', 'MI', 'MN', 'MS', 'MO', 'MT',</pre>
	3	(NE1. (NV1. (NH1. (NJ1. (NM1. (NY1. (NC1. (ND1. (OH1. (OK1.
	Ā	DR' PA' PR' RI' SC' SD' TN' TX' UT' VT'
	2	
	9	VA , VI , NA , NV , NI , NI /
C .		
C		
C***	***	****************
С		
С		
č		
-		D105-0
		PAGE=U
		RANK=0
С		
		CALL DATE(DAY)
С		
č		
ž		
U		
C*		INPUT REPORT TYPE AND TITLE OF REPORT
		WRITE(5.66)
00066		FORMAT(TIO / PLEASE ENTER REPORT TITLE ·/)
	•	FORMATION, FEESE LITER REFORT FALLE . /
• •		REAU(D, (/) 1 LE
00077	7	FORMAT(3A5)
		WRITE(5,88)

-

.

EXHIBIT A-6. ACCIDENT AND CASUALTY PREDICTION FORMULA REPORT PROGRAM

00088 FORMAT(//, T5, 'SHOULD REPORT INCLUDE ACCIDENT ', PREDICTION RESULTS FOR : '// * T10, 'PREDICTED ACCIDENTS (ENTER 1) 1/ * T10, 'FATAL (ENTER 2)'/ ACCIDENTS T10, 'COMBINED CASUALTY INDEX * (ENTER 3)'/) READ(5,99) CHOICE 00099 FORMAT(I) С ĉ С Ç* NEW PAGE !! PRINT PAGE HEADINGS 100 PAGE=PAGE+1 LINE=10 WRITE(21,110) DAY, PAGE FORMAT('1', T3, 245, T54, 'PUBLIC RAIL-HIGHWAY CROSSINGS'. 110 T120, 'PAGE ', 13) ÷ С CALL HEADER(CHOICE) C C READ INVENTORY INPUT FILE C* С 200 READ(20,210,END=900) FATAL, INJURY, CMBCAS, A, H, ID, STATE, COUNTY, CITY, RROAD, YEAR, MONTH, OLDCL, NEWCL, STOPS, NS, NT, DS, DT, SPEED, MTRKS, OTRKS, AMTRAK, PAVED, LANES, FC10, FC1, AADT, TRUCKS, ACC * 210 FORMAT(5F10.7, A4, A3, I2, I3, I4, A4, 2I2, 3I1, 4I2, I3, I1, I2, 311,2A1,16,12,712) 0000 K=PAVED RANK=RANK+1 SWIT=NS+DS THRU=NT+DT TRACKS=MTRKS+OTRKS С С C* DETERMINE ACCIDENT OR CASUALTY MEASURE TO BE USED C C AC=A IF(CHOICE.EQ:2) AC=FATAL IF(CHOICE.EQ.3) AC=CMBCAS C* WRITE DATA TO REPORT FILE С IF(YEAR.LT.77) GO TO 230 С WRITE(21,220) RANK, AC, ID, ISTATE(STATE), RROAD, * ACC(AH-4), ACC(AH-3), ACC(AH-2), ACC(AH-1), ACC(AH), . MONTH, YEAR, NEWCL, SWIT, DT, THRU, TRACKS, MTRKS, SPEED, PAVE(K), LANES, FC10, FC1, AADT FORMAT(2X, I6, T12, F10.6, T26, A4, A3, T37, A2, T40, A4, T46, 513, T63, 12, '/', 12, T71, I1, T75, I3, T81, I2, T88, I2, T93, I2, T99, I2, T104, I3, T110, A3, T115, I2, 220 * * T120, A1, T122, A1, T125, I6) GD TO 250 с с

EXHIBIT A-6. ACCIDENT AND CASUALTY PREDICTION FORMULA REPORT PROGRAM (Cont.)

00230 WRITE(21,240) RANK, AC, ID, ISTATE(STATE), RROAD, ACC(AH-4), ACC(AH-3), ACC(AH-2), ACC(AH-1), ACC(AH), NEWCL, SWIT, DT, THRU, TRACKS, MTRKS, SPEED, PAVE(K), LANES, FC10, FC1, AADT FORMAT(2X, IB, T12, F10.8, T28, A4, A3, 240 T37, A2, T40, A4, T48, 513, T71, I1, T75, I3, T81, I2, T88, I2, T93, I2, T99, I2, T104, I3, T110, A3, T115, I2, ± * T120, A1, T122, A1, T125, I8) ÷ С č 250 LINE=LINE+1 IF(LINE.LT.60) GO TO 200 GO TO 100 C C C 900 CALL EXIT С END SUBROUTINE HEADER (WHICH) INTEGER WHICH GOTO(300,900,600) WHICH 00300 WRITE(21,120) FORMAT(T49, 'RANKED BY PREDICTED ACCIDENTS PER YEAR'/ 120 T56, 'INVENTORY DATE: APRIL 1983'/) . С WRITE(21,140) 140 * ÷ * * * * * × * × С С GOTO 999 С С 00800 WRITE(21,122) FORMAT (T49, 'RANKED BY PREDICTED COMBINED CASUALTY INDEX C.C.I.*' 122 /T56, 'INVENTORY DATE: APRIL 1983'/) С

EXHIBIT A-6. ACCIDENT AND CASUALTY PREDICTION FORMULA REPORT PROGRAM (Cont.)

```
WRITE(21,142)
   142
            *
            *
            *
            ÷
            *
            *
            ŧ
            *
            *
С
Ĉ
                     GOTO 999
С
С
00900
                   WRITE(21,123)
                   FORMAT(T49, 'RANKED BY PREDICTED FATAL ACCIDENTS PER YEAR'/
T58, 'INVENTORY DATE: APRIL 1983'/)
  123
            *
С
                   WRITE(21,143)
                   FORMAT(T14, 'PREDICTED', T120, 'U-R/',/T7, 'RANK',
T14, 'FATAL',
T27, 'XING', T46, '# OF ACCIDENTS',
T63, 'DATE', T74, 'TOTL', T80, 'DAY', T86, 'TOTL', T120, 'HWY'/
T14, 'ACCIDENTS', T27, 'ID #',
  143
            *
            *
            *
            *
                                     T14, 'ACCIDENTS', T27, 'ID #',

T37. 'ST', T41, 'RR', T47, '------',

T64, 'OF', T70, 'WD', T74, 'SWIT', T80, 'THRU', T86, 'THRU',

T92, 'T0TL', T98, 'MAIN', T104, 'TTBL',

T110, 'HWY', T115, 'HWY', T120, 'TYP',/

T14, 'PER YEAR', T47, '78 79 80 81 82',

T63, 'CHNG', T70, 'CL', T74, 'TRNS', T80, 'TRNS',

T88, 'TRNS', T92, 'TRKS', T98, 'TRKS',

T104, 'SPD', T110, 'PVD', T115, 'LNS',

$120, 'CODE', T127, 'AADT'//)
            *
            ±
            ×
            *
с
с
00999
                   RETURN
                   END
```

EXHIBIT A-6. ACCIDENT AND CASUALTY PREDICTION FORMULA REPORT PROGRAM (Cont.)

·

.

APPENDIX B

THIS PROGRAM CALCULATES AN INITIAL BENEFIT/COST RATIO FOR EACH CROSSING WHICH DOES NOT CURRENTLY HAVE GATES. Č* C* C* C* C* C* C* C* C* C* INPUT MUST BE IN THE 70 CHARACTER FORMAT PLUS SIX YEARS OF ACCIDENT HISTORY. IN ADDITION, THIS PROGRAM ALSO QUALIFIES CROSSINGS FOR STANDARD STOP SIGN UPGRADES. UNIT 20 - INVENTORY INPUT FILE WITH FINAL PREDICTED C≭ ACCIDENTS C* UNIT 21 - INITIAL BENEFIT/COST RATIO OUTPUT FILE C* UNIT 22 - COST/EFFECTIVENESS/BUDGET LEVEL INPUT FILE C* C*** С INTEGER EFFLAG, SEVFLG, SOPFLG, NOSTOP INTEGER ID(2), CLASS, NS, NT, DS, DT, MTRKS, OTRKS INTEGER FC10, FC1, AADT, STOPS, TRAINS, TRACKS, STPFLG INTEGER OFFSET, INDEX С REAL COST(3), EFFECT(12), FATAL, INJURY, CMBCAS, A, RATIO(3), BENCOS REAL RAT, AC С COMMON/FLAGS/EFFLAG, SEVFLG, SOPFLG, NOSTOP С Ċ C** C C C* C* REQUEST PROGRAM OPTIONS Ċ* CALL QUERY С С С С * C* C* OPEN INPUT AND OUTPUT FILES OPEN(UNIT=20,FILE='ALA.DAT') OPEN(UNIT=21, FILE='TEMP.DAT') OPEN(UNIT=22.FILE='BENCOS.DAT') C C C* C* SAVE FLAGS FOR NEXT PROGRAM Č* WRITE(24, 1000)EFFLAG, SEVFLG, SOPFLG, NOSTOP 1000 FORMAT(51) ¢ С Č* C* C* READ STANDARD COST AND EFFECTIVENESS DATA С READ(22,2000) COST FORMAT (3F 10.0) 2000 C C READ(22,3000) EFFECT(1),EFFECT(2),EFFECT(3) 3000 FORMAT(3F10.2) C C IF(EFFLAG.EQ.O)GOTO 100 С

С C* C* C* READ EXTENDED EFFECTIVENESS DATA READ(22,4000) EFFECT 4000 FORMAT(12F10.2) С C C C C * C **************************** * C* MAIN PROCESSING LOOP * C* C* C* SELECT NEXT CROSSING * * * C READ(20,5000, END=500) FATAL, INJURY, CMBCAS, A, ID, CLASS, 100 STOPS, NS, NT, DS, DT, MTRKS, DTRKS, FC10, FC1, AADT FORMAT(4F10.7,10X,A4,A3,18X,211,412,3X, 5000 I1, I2, 3X, 2I1, I6) C C C* C* DELETE CROSSINGS WHICH CURRENTLY HAVE GATES C* IF(CLASS.EQ.8) GOTO 100 С Ç C* Ċ* TOTAL TRAINS AND TRACKS FOR CURRENT CROSSING C* TRAINS=NS+NT+DS+DT TRACKS=MTRKS+OTRKS С C C * C * C * C * ****************** * STOP SIGN QUALIFICATION Č* C ** STPFLG=0 С IF(STOPS.GE.1) GOTO 150 IF(CLASS.GE.5) GOTO 150 IF(FC1.NE.9) GOTO 150 IF(TRAINS.LE. 10) GOTO 150 IF(TRACKS.NE.1) GOTO 150 IF(FC10.NE.1) GOTO 125 IF(AADT.LT.1500) STPFLG=1 GOTO 150 IF(AADT, LT. 400) STPFLG=1 125 С С C* C* C* C* ********************** EFFECTIVENESS QUALIFICATION * * Č∗ C *************************** 150 OFFSET=0 IF(EFFLAG.EQ.0) GOTO 180 IF(TRACKS.GT.1) GOTO 175 IF(TRAINS.GE.11) OFFSET=3 GOTO 180 OFFSET=6 175 IF(TRAINS.GE.11) OFFSET=9 C C

C* C* C* C* C* C* CALCULATE BEN/COS RATIOS * * × ******** 180 DO 190 INDEX=1,3 RATIO(INDEX)=EFFECT(INDEX+OFFSET)/COST(INDEX) 190 C C C* IF GATES ARE ALWAYS MORE COST-EFFECTIVE THAN C* FLASHING LIGHTS, USE A GATES ONLY POLICY Ċ* C* IF(RATIO(2).GT.RATIO(1)) RATIO(1)=RATIO(2) С c c C* C* C* DETERMINE ACCIDENT OR CASUALTY MEASURE TO BE USED C* Ċ* AC=A С IF(SEVFLG.EQ.1) AC=FATAL С IF(SOPFLG.EQ.1) AC=CMBCAS С Ċ C Č∗ C∗ SINGLE TRACK PASSIVE CROSSINGS C* Ċ* RAT=RATIO(1) C* C* Ū* MULTIPLE TRACK PASSIVE CROSSINGS - GATES ONLY! C* C* IF(TRACKS.GT.1) RAT=RATIO(2) C* C* C* C* CROSSINGS WITH FLASHING LIGHTS C* IF(CLASS.GT.4) RAT=RATIO(3) C* C C Č* Ç* CALCULATE BENEFIT/COST RATIO C* BENCOS=AC*RAT*10.**6 00000** 24 -WRITE RESULTS C* WRITÉ(21,6000) BENCOS,FATAL,INJURY,CMBCAS,A,ID,CLASS,TRAINS, TRACKS,FC10,FC1,AADT,STPFLG FORMAT(F10.6,4F10.7,A4,A3,I1,I2,I3,2I1,I6,I1) .400 6000 GO TO 100 0000

0

SUBROUTINE QUERY C*** ************* C* C* C* THIS SUBROUTINE REQUESTS OPTIONS TO BE FOLLOWED BY THE BENCOS PROGRAM C* AND THE RESORS PROGRAM. THE OPTIONS C* C* C* C*** ARE SELF-EXPLANATORY. С INTEGER EFFLAG, SEVFLG, SOPFLG, NOSTOP С COMMON/FLAGS/EFFLAG, SEVFLG, SOPFLG, NOSTOP C C*** C C C C C * Ċ* SET FLAG DEFAULTS C* EFFLAG=1 SEVFLG=0 SOPFLG=0 NOSTOP=0 C C C C * C * C * QUERY OPTIONS WRITE(5,1000) FORMAT(' Sh 1000 Should basic or extended effectiveness values be used?'/ * (Enter 0 - basic; 1 - extended): ') С READ(5,1500) EFFLAG FORMAT(I) 1500 C C C WRITE(5,2000) Should accident severity be used or not used?'/ (Enter 0 - not used; 1 - used):() 2000 FORMAT (' . С READ(5,2500) SEVFLG 2500 FORMAT(I)

500 CLOSE(UNIT=20) CLOSE(UNIT=21) CLOSE(UNIT=22) C C C C CALL EXIT C END

B-4

```
C
C
     IF(SEVFLG.EQ.0) GOTO 3700
     3000
   .....
   *
С
     READ(5,3500) SOPFLG FORMAT(1)
3500
С
čc
     03700
04000
   *
   *
С
     READ(5,4500) NOSTOP
FORMAT(I)
4500
0000
6000
     RETURN
Ç
     END
```

VARIABLE NAME	VARIABLE TYPE	DESCRIPTION
A	R	PREDICTED ACCIDENTS
AADT	I	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC
BENCOS	R	ACCIDENT REDUCTION/COST RATIO
CLASS	I	PRESENT WARNING DEVICE CLASS
CMBCAS	R	PREDICTED COMBINED CASUALTY INDEX
COST	R	THRU CURRENT WARNING DEVICE UPGRADE COSTS; COST(1): COST OF UPGRADING FROM PASSIVE TO FLASHING COST(2); COST OF UPGRADING FROM PASSIVE TO GATES COST(3): COST OF UPGRADING FROM FLASHING TO GATES
DS	I	NUMBER OF DAYLIGHT SWITCH TRAINS
DT	I	NUMBER OF DAYLIGHT THRU TRAINS
EFFECT	R	SET OF WARNING DEVICE UPGRADE EFFECTIVENESS VALUES: NOTE: THIS VARIABLE COULD CONTAIN EITHER, THREE STANDARD WARNING DEVICE UPGRADE VALUES OR A SET OF TWELVE EXTENDED VALUES BASED ON CROSSING TRAINS AND TRACK TOTALS.
EFFLAG	I	THIS FLAG DETERMINES WHICH SET OF WARNING DEVICE UPGRADE EFFECTIVENESS VALUES WILL BE USED, 1 -EXTENDED, BASED ON TRAINS AND TRACKS, O - STANDARD
FATAL	R	PREDICTED FATAL ACCIDENTS PER YEAR
FC1	I	UNITS DIGET OF FUNCTIONAL CLASSIFICATION OF ROAD
FC10	I	TENS DIGET OF FUNCTIONAL CLASSIFICATION OF ROAD
ID	I	CROSSING IDENTIFICATION NUMBER
TNHIRY	R	PREDICTED INJURY ACCIDENTS PER YEAR
MTRKS	т	NUMBER OF MAIN TRACKS
NOSTOP	Ĩ	FLAG WHICH DETERMINES IF STOP SIGNS SHOULD BE CONSIDERED AS AN UPGRADE DEVICE, O - NO, 1 - YES
NS	I	NUMBER OF NIGHT SWITCH TRAINS
NT	I	NUMBER OF NIGHT THRU TRAINS
OFFSET	I	VALUE DETERMINES WHICH ONE OF FOUR SETS OF EXTENDED EFFECTIVENESS UPGRADE VALUES WILL BE USED ON THE CURRENT CROSSING
OTRKS	I	NUMBER OF OTHER TRACKS
RATIO	R	THIS VARIABLE HOLDS EFFECTIVENESS/COST RATIOS, RATIO(1): PASSIVE TO FLASHING UPGRADE EFF. VALUE/COST(1) RATIO(2): PASSIVE TO GATE UPGRADE EFF. VALUE/COST(2) RATIO(3): FLASHING TO GATE UPGRADE EFF. VALUE/COST(3)
SEVFLG	I	FLAG WHICH DETERMINES IF ACCIDENT SEVERITY SHOULD BE USED AS A PROBABILITY MEASURE, 1 - YES, 0 - NO
SOPFLG	I	 FLAG WHICH DETERMINES IF FATALITIES ONLY OR COMBINED CASUALTY INDEX SHOULD BE USED AS A PROBABILITY MEASURE, 1 - COMBINED CASUALTY INDEX 0 - FATALITIES ONLY
STOPS	I	NUMBER OF STANDARD STOP SIGNS ON SITE
STPFLG	Ĩ	FLAG, DOES THIS CROSSING QUALIFY FOR A STOP SIGN UPGRADE, 1 - YES, 0 - NO
TRACKS	I	NUMBER OF TRACKS
TRAINS	I ·	NUMBER OF TRAINS

EXHIBIT B-2. VARIABLE DICTIONARY FOR THE ACCIDENT OR CASUALTY REDUCTION/OR COST RATIO PROGRAM

FL+G .63 **** D+G ~10 .78 P→FL . 57 **** FL→G .65 P→FL P→G .86 .65 . FL+G . 69 **** >10 >+G .80 P+FL **** .61 43800. 65300. 58700. .70 .83 .69 P+FL P+G FL+G 30000000. WARNING DEVICE COST STANDARD EFFECTIVENESS VALUES EXTENDED EFFECTIVENESS VALUES TOTAL BUDGET NUMBER OF TRACKS NUMBER OF TRAINS PER DAY UPGRADE CATEGORY

* * * * *

* * * * * MULTIPLE

*

* * *

* * * * * SINGLE

SAMPLE DATA INPUT TO ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM EXHIBIT B-3.

INITIAL ACR/C RATIO PREDICTED	FATAL ACCIDENTS INJURY INDEX	COMBINED CASUALTY INDEX	FINAL PREDICTED ACCIDENTS	ID NUMBER	TOTAL TRAINS TOTAL TRAINS TOTAL TRACKS	AADT STOP SIGN QUALIFIER
HDICLINI 8.527157 7.728080 0.000 8.527157 0.000 8.527157 0.000 8.527157 0.000 8.527157 0.000 6.89058 0.000 5.387630 0.000 5.387630 0.000 5.387630 0.000 5.387630 0.000 5.387630 0.000 5.387630 0.000 5.387630 0.000 4.784918 0.000 3.774107 0.000 3.658706 3.3658706 0.000 3.344532 0.0000 3.344532 0.0000 3.344532 0.00000 3.137275 0.00000 3.137275 0.0000000 2.775870 2.775870 2.775877 0.00	N N N N	L TVDE 1. 7226451 2. 5450343 1. 2955847 1. 030255847 1. 030255 2. 0341419 2. 0172035 1. 5939193 0. 9590138 0. 4608100 1. 20188300 0. 5807508 0. 4698784 0. 4377142 1. 4327858 0. 828202 0. 84698784 0. 4377142 1. 4325850 0. 829202 0. 84698788 0. 8081366 0. 4172411 0. 8542262 0. 84053722 1. 4335801 0. 9598828 0. 8635209 0. 8293808 0. 4525861 0. 7599217 0. 8996504 0. 5925685 0. 4525861 0. 7599217 0. 8996504 0. 5872835 0. 1542856 0. 9494988 0. 6617702 1. 0077455 0. 2697141 0. 2654642 1. 1452617	ILVII IL	IBMIN 0 002126N 002126N 0002153K 0002153K 00029728 00029728 0002081J 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002087A 0002085L 0002085L 00021256 00021256 00021256 00021256 00021256 0002085 0002085 00021256 00021256 00021256 00021256 00021256 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 0002085 00002085 00002085 00002085 00002085 00002085 00002085 00000000000000 0000000000000000000	$\begin{array}{c} J L T H L D L D L D L D L D L D L D L D L D L D L D L D L D L D D D D D D D D$	JIS d01S 10VW 91900 8 91900 9 425000 9 425000 9 105100 9 53000 9 105100 9 105100 9 105100 9 105100 9 105100 9 105100 9 105100 9 105100 9 105100 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 105000 9 118700 9 118700 9 118700 9 118700 9 118700 9 10000 9 118700 9 118700 <
2.561085 0.0 2.550344 0.0 2.539234 0.0 2.533519 0.0 2.508054 0.0 2.486282 0.0 2.449897 0.0 2.415807 0.0 2.401634 0.0 2.395636 0.0 2.366740 0.0 2.366740 0.0 2.331731 0.0 2.320853 0.0 2.318090 0.0 2.273176 0.0	0.0595922 00006030 0.0495689 0020891 0.0377404 0136818 0.0505467 0093540 0.0475699 0037747 0.0475699 0077443 0.0475699 0077443 0.0463422 0118529 0.0423052 0118529 0.0407804 0173809 0.0544126 013878 0.0528092 016529 0.0410261 0016668 0.0293382 016668 0.0382867 0138698 0.0404809	1.0319389 0.3527155 0.1421961 0.7346384 0.5149020 0.4684060 0.4336117 0.4335549 0.6349491 0.6204846 0.9234573 0.5721984 0.8236714 0.8236714 0.5714620 0.7239788	0.2388281 0.1682081 0.1674753 0.1674753 0.1670984 0.1639829 0.2084188 0.1593347 0.1402554 0.2013444 0.2186586 0.1361731 0.1355376 0.2093414 0.2093414 0.2093414	00130383 0013837 002133 002331F 0035658 000420E 00021325 000490L 000258F 0003538E 000157L 0003538E 000167L 0004834 00020654	7727 21 176 10 172 11 174 10 10712 11 1722 10 1712 11 1723 10 1714 11 1715 11 1715 11 1714 21 1714 21 1714 21 174 7 1014 2 173 5 174 2 175 5 174 2 175 5 174 2 175 5 174 2 175 5 174 5 175 5 174 6 104 6 104 6 104 6 105 10	38000 8 32100 7 36700 6 31400 7 15000 6 26000 7 52800 2 50000 8 5900 6 20000 7 26100 4 40000 9 1200 6 15000 9 4700

EXHIBIT B-4. SAMPLE OUTPUT FROM ACCIDENT OR CASUALTY REDUCTION/COST RATIO PROGRAM

FIELD	COLUMN	LENGTH	DATA TYPE	FIELD DESCRIPTION
1	1	10	F	ACCIDENT REDUCTION/COST RATIO IN ACCIDENTS PER MILLION DOLLARS
2	11	10	F	PREDICTED FATAL ACCIDENTS PER YEAR
3	21	10	F	PREDICTED INJURY ACCIDENTS PER YEAR
4	31	10	F	PREDICTED COMBINED CASUALTY INDEX
5	41	10	F	PREDICTED ACCIDENTS
6	51	7	А	CROSSING IDENTIFICATION #
7	58	1	I	PRESENT WARNING DEVICE CLASS
7	59	2	I	NUMBER TRAINS
8	61	3	I	NUMBER TRACKS
9	64	1	I	TENS DIDGET FUNCTIONAL CLASSIFICATION OF ROAD
10	65	1	I	UNITS DIDGET FUNCTIONAL CLASSIFICATION OF ROAD
11	66	6	I	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC
12	72	1	I	STOP SIGN QUALIFIER

*DATA TYPE

I - Integer F - Fixed Decimal

A - Alphanumeric

EXHIBIT B-5. FIELD DESCRIPTIONS FOR OUTPUT FROM THE ACCIDENT OR CASUALTY REDUCTION COST RATIO PROGRAM

. .

APPENDIX C

2

.

THIS PROGRAM RUNS THE RESORCE ALLOCATION ALGORITHM AFTER THE INITIAL BENEFIT/COST RATIO HAS BEEN CALCULATED. UNIT 20 - INITIAL BENEFIT/COST RATIO INPUT FILE SORTED IN DESCENDING ORDER OF BENEFIT/COST RATIO UNIT 21 - FINAL BENEFIT/COST RATIO OUTPUT FILE UNIT 22 - COST/EFFECTIVENESS/BUDGET LEVEL INPUT FILE UNIT 23 - OUTPUT FILE FOR LOWEST COST/BENEFIT RATIO Ċ* C* C** UNIT 24 - USER REQUEST/PROG. OPTIONS FILE ************************** ******* č PARAMETER IDIM=500 С INTEGER EFFLAG, SEVFLG, SOPFLG, NOSTOP INTEGER MAX, MIN, ID(2), CLASS, TRAINS, TRACKS, OFFSET INTEGER INDEX, IFLAG, XID(2, IDIM), PC(IDIM), TRNS(IDIM) INTEGER TRKS(IDIM), UR(IDIM), FUN(IDIM), ADT(IDIM), OFF(IDIM) INTEGER STP(IDIM), K, GATE, LIGHT, DUMP(12), IND, INDX INTEGER AADT, FC10, FC1, STPFLG С REAL COSTS, BCGATE(IDIM), COST(3), EFFECT(12), MAXAMT REAL BENCOS, FATAL, INJURY, A, RATIO(3), AC, EVAL, CVAL REAL CMBCAS, EFF, COS, BC(IDIM), PA(IDIM), BCMIN, BENFIT С COMMON /AA/ XID, PA, PC, TRNS, TRKS, UR, FUN, ADT, STP, OFF COMMON /BB/ MAX, EFFECT, COST, GATE, COSTS, MAXAMT, BCMIN С DATA GATE/'GATE ', DATA LIGHT/'LIGHT'/ C C Č* C C* ********** ********** C* OPEN FILES C* OPEN(UNIT=20, FILE='ALOC.DAT') OPEN(UNIT=21, FILE='TEMP.DAT') OPEN(UNIT=22, FILE='BENCOS.DAT') с С Č* C* C* READ OPTION FLAGS READ(24, 1000) EFFLAG, SEVFLG, SOPFLG, NOSTOP 1000 FORMAT(41) C* C* Č* INITIALIZE VARIABLES Č* MAX=1 MIN=1 COSTS=0. BCGATE(1)= -9999. C C * C * C * READ IN COST AND EFFECTIVNESS DATA READ(22,2000) COST 2000 FORMAT(3F10.0) C READ(22,2500) EFFECT(1),EFFECT(2),EFFECT(3)

EXHIBIT C-1. RESOURCE ALLOCATION PROGRAM

```
2500
         FORMAT(3F10.2)
Ç
č
         IF(EFFLAG.EQ.O) GOTO 25
C
C*
C*
C*
                  READ IN EXTENDED EFFECTIVNESS DATA
         READ(22,2700) EFFECT
 2700
         FORMAT(12F10.2)
C
         GOTO 50
¢
C*
C*
C*
                  READ IN TOTAL BUDGET AMOUNT
 25
         READ(22,2700) DUMP
С
 50
         READ(22,3000) MAXAMT
FORMAT(F10.0)
 3000
00000*******
                         *************************
         ***
         *
                         MAIN PROCESSING LOOP
                                                               *
                                                                *
                         SELECT NEXT CROSSING
          READ(21,3500,END=400) BENCOS,FATAL,INJURY,CMBCAS,A,ID,CLASS,
TRAINS,TRACKS,FC10,FC1,AADT,STPFLG
FORMAT(F10.6,4F10.7,A4,A3,I1,I2,I3,2I1,I6,I1)
 100
 3500
*******************************
               EFFECTIVENESS QUALIFICATION
                                                 *
         *
                                                  .
         **********
         OFFSET=0
         IF(EFFLAG.EQ.O) GOTO 150
С
         IF(TRACKS.GT.1) GOTO 125
IF(TRAINS.GE.11) OFFSET=3
         GOTO 150
C
 125
         OFFSET=8
         IF(TRAINS.GE.11) OFFSET=9
C C C * C * C * C * C *
          *
              CALCULATE BENEFIT/COST RATIO
                                                   *
                                                   *
         ************************************
C*
 150
         DO 160 INDEX=1,2
         IND=INDEX+OFFSET
         RATIO(INDEX)=EFFECT(IND)/COST(INDEX)
 160
C
C
```

C* DETERMINE ACCIDENT OR CASUALTY MEASURE TO BE USED **C*** C* AC=A С IF(SEVFLG.EQ.1) AC=FATAL C IF(SOPFLG.EQ.1) AC=CMBCAS С C č IF(CLASS.LE.4) GOTO 175 C* Ç* SELECT WARNING DEVICE COST AND EFFECTIVENESS VALUES Ċ* FOR FLASHING LIGHTS TO GATES UPGRADE Ċ* IND=3+0FFSET EVAL=EFFECT(IND) CVAL=COST(3) GOTO 200 Ç 175 IF(TRACKS.LE.1) GO TO 180 C* C* SELECT WARNING DEVICE COST AND EFFECTIVENESS VALUES Č* C* FOR PASSIVE TO GATES UPGRADE IND=2+OFFSET EVAL=EFFECT(IND) CVAL=COST(2) GOTO 200 С C* C* C* IF GATES ARE ALWAYS MORE COST-EFFECTIVE THAN FLASHING LIGHTS, USE A GATES ONLY POLICY Ċ* 180 IF(RATIO(2).LE.RATIO(1)) GO TO 190 C≭ C≭ SELECT WARNING DEVICE COST AND EFFECTIVENESS VALUES FOR PASSIVE TO GATES UPGRADE C* C* IND=2+OFFSET EVAL=EFFECT(IND) CVAL=COST(2) GOTO 200 C C* C* C* C* C* C* SINGLE TRACK PASSIVE CROSSINGS * × × * Ċ* Ċ* Č* 190 INDX=2+0FFSET IND=1+OFFSET EFF=EFFECT(INDX)-EFFECT(IND) COS=COST(2)-COST(1) BCGATE(MIN) = AC*EFF/COS*10.**8 C C* C* CHECK THE TEMPORARY DECISION LIST Ċ*

EXHIBIT C-1. RESOURCE ALLOCATION PROGRAM (Cont.)

```
195
          IFLAG=0
          IF(BENCOS.LT.BCGATE(MAX)) CALL GATES(IFLAG)
          IF(IFLAG.EQ.1) GO TO 195
IF(IFLAG.EQ.2) GO TO 400
C
C*
C*
C*
                    ADD THE SELECTED CROSSING TO THE BOTTOM OF THE
                    TEMPORARY DECISION LIST
Č*
          BC(MIN)=BENCOS
          XID(1,MIN)=ID(1)
                                               .
          XID(2, MIN)=ID(2)
PA(MIN)=AC
          PC(MIN)=CLASS
          OFF(MIN)=OFFSET
          TRNS(MIN)=TRAINS
          TRKS(MIN)=TRACKS
                                   .
          UR(MIN)=FC10
          FUN(MIN)≈FC1
          ADT(MIN)=AADT
          STP(MIN)=STPFLG
          MIN=MIN+1
          BCMIN=BENCOS
C
C*
C*
C*
                    CHECK TO SEE IF THE BUDGET IS EXPENDED
          COSTS=CDSTS+COST(1)
IF(CDSTS.GE.MAXAMT) GO TO 400
          GO TO 100
*****
                                                            ****
                    MULTIPLE TRACK PASSIVE
          *
                                                               *
          *
                            AND
                                                               *
          *
                    FLASHING LIGHT CROSSINGS
                                                               *
                                                               *
          *
          **********************************
                    CHECK THE TEMPORARY DECISION LIST
 200
          IFLAG=0
          IF(BENCOS.LT.BCGATE(MAX)) CALL GATES(IFLAG)
          IF(IFLAG.EQ.1) GO TO 200
IF(IFLAG.EQ.2) GO TO 400
          BENFIT=AC*EVAL
C*
                    RECOMMEND GATES AT SELECTED CROSSING
          WRITE(20,4000) BENCOS, AC, ID, CLASS, TRAINS,
TRACKS, FC10, FC1, AADT, GATE, CVAL, BENFIT, STPFLG
FORMAT(F10.6, F10.6, A4, A3, I1, I2, I3, 2I1, I6, A5, F7.0, F10.6, I1)
      *
 4000
          BCMIN=BENCOS
C*
                    CHECK TO SEE IF THE BUDGET IS EXPENDED
Č*
C*
```

1

	COSTS=COSTS+CVAL
	IF(COSTS.GE.MAXAMT) GO TO 400 GD TO 100
c	
č	
C*	
Č*	BUDGET EXPENDED: RECOMMEND FLASHING LIGHTS AT THOSE
Č*	CROSSINGS STILL ON THE TEMPORARY DECISION LIST
Č*	
C*	
C*	
400	IF(MAX.GE.MIN) GD TO 500
	DO 450 K=MAX,MIN-1
	BENFIT=PA(K)*EFFECT(1+OFF(K))
450	WRITE(20,4000) BC(K),PA(K),XID(1,K),XID(2,K),PC(K),
*	TRNS(K), TRKS(K), UR(K), FUN(K), ADT(K),
E 00 X	LIGHT, CUST(1), BENFIT, STP(K)
500	WKIIE(23,3000) DUMIN Codwat(Eq. A)
C	FURMA1(F0.4)
č	
č	
•	CLOSE(UNIT=20)
	CLOSE (UNIT=21)
	CLOSE(UNIT=22)
С	
С	
-	CALL EXIT
C	

	SUBROUTINE GATES(IFLAG)
C*****	***********
C+ C+ C+ C+	THIS SUBROUTINE RECOMMENDS GATES AT SINGLE TRACK PASSIVE CROSSINGS.
C****** C C	***************************************
с С	PARAMETER IDIM=500
	INTEGER IFLAG, IND, OFFSET, XID(2, IDIM), PC(IDIM), TRNS(IDIM) INTEGER TRKS(IDIM), UR(IDIM), FUN(IDIM), ADT(IDIM), STP(IDIM) INTEGER GATE, MAX, LIGHT, OFF(IDIM)
C	REAL BENFIT, PA(IDIM), EFFECT(12), COST(3), BCMIN REAL BENCUS, COSTS, MAXAMT
C	COMMON /AA/ XID,PA,PC,TRNS,TRKS,UR,FUN,ADT,STP,OFF Common /bb/ Max,Effect.Cost,gate,costs,maxamt,bcmin
C C	********

с с	
C	· · · · ·
C*	TURN ON THAN TO INDICATE SUBBOUTINE CATES HAS
C#	REFN CALLED
Č*	
_	IFLAG=1
	IND=2+OFF(MAX)
	BENFIT=PA(MAX)*EFFECT(IND)
* +	BENCUS=BENFIT/CUST(2)*10.**8
C#	FINALIZE THE RECOMMENDATION OF GATES AND REMOVE
C+	CROSSING FROM THE TEMPORARY DECISION LIST
Č*	
	<pre>WRITE(20,2000) BENCOS,PA(MAX),XID(1,MAX),XID(2,MAX),</pre>
*	PC(MAX), TRNS(MAX), TRKS(MAX), UR(MAX),
*	FUN(MAX), ADT(MAX), GATE, COST(2),
2000	ENDIT,STP(MAX) ENDWAT(EIN & EIN & A4 A3 11 12 13 211 18 A5 E7 0 E10 6 11)
C 2000	10KMR1(110.0,110.0,A4,A3,11,12,10,211,10,A3,17.0,110.0,11)
č	
	MAX=MAX+1
	BCMIN=BENCOS
C*	OUTOK TO OFF TE THE BUDGET TO EVOLUTIO
C*	CHECK ID SEE IF THE BUDGET IS EXPENDED
U -	COSTS=COSTS+COST(2)-COST(1)
	IF(COSTS.GE.MAXAMT) IFLAG=2
C	
C	
C	5 P (15 1)
~	KE I UKM

VARIABLE NAME	VARIABLE TYPE	DEFINITION
A		PREDICTED ACCIDENTS
AADT	I	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC
ADT	I	ANNUAL AVERAGE DAILY VEHICULAR TRAFFIC STORED FOR
AC	R	PASSIVE CROSSINGS WITH SINGLE TRACK PROBABILITY MEASURE, EITHER PREDICTED ACCIDENTS, FATAL ACCIDENTS, OR COMBINED CASUALTY INDEX
BC	R	ACCIDENT REDUCTION/COST RATIO STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
BCGATE	R	INCREMENTAL ACCIDENT REDUCTION/COST RATIO STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
BCMIN	R	MINIMUM ACCIDENT REDUCTION/COST RATIO FOR RUN
BENCOS	R	ACCIDENT REDUCTION/COST RATIO
BENFIT	R	ACCIDENTS PREVENTED
CLASS	I	PRESENT WARNING DEVICE CLASS
CMBCAS	R	PREDICTED COMBINED CASUALTY INDEX
COST	R	THREE CURRENT WARNING DEVICE UPGRADE COSTS; COST(1): COST OF UPGRADING FROM PASSIVE TO FLASHING COST(2): COST OF UPGRADING FROM PASSIVE TO GATES COST(3): COST OF UPGRADING FROM FLASHING TO GATES
COSTS	R	CUMULATIVE COST OF UPGRADES
EFFECT		SET OF WARNING DEVICE UPGRADE EFFECTIVENESS VALUES NOTE: THIS VARIABLE COULD CONTAIN EITHER THREE STANDARD WARNING DEVICE UPGRADE EFFECTIVENESS VALUES OR A SET OF TWELVE EXTENDED VALUES BASED ON CROSSING TRAIN AND TRACK TOTALS
EFFLAG		THIS FLAG DETERMINES WHICH SET OF WARNING DEVICE UPGRADE EFFECTIVENESS VALUES WILL BE USED, 1 - EXTENDED BASED ON TRAINS AND TRACKS, 0 - STANDARD
FATAL		PREDICTED FATAL ACCIDENTS PER YEAR
FC1	I	UNITS DIDGET OF FUNCTIONAL CLASSIFICATION OF ROAD
FC10	I	TENS DIDGET OF FUNCTIONAL CLASSIFICATION OF ROAD
FUN	I	UNITS DIDGET OF FUNCTIONAL CLASSIFICATION OF ROAD STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
GATE	I	THE WORD "GATE"
TD	I	CROSSING IDENTIFICATION NUMBER
IDIM	Ī	PARAMETER WHICH DIMENSIONS VARIABLES USED TO STORE
IFLAG	I	FLAG TO TELL IF SUBROUTINE GATES HAS BEEN CALLED, 0 - NO, 1 - YES, 2 - YES, MONEY RAN OUT
INJURY	R	PREDICTED INJURY ACCIDENTS PER YEAR
LIGHT	I	THE WORD "LIGHT"
MAX	I	INDEX OF THE LARGEST ACCIDENT REDUCTION/COST RATIO STORED IN BCGATE

EXHIBIT C-2. VARIABLE DICTIONARY FOR THE RESOURCE ALLOCATION PROGRAM

C-7

,

VARIABLE NAME	VARIABLE TYPE	DEFINITION
MAXAMT	R	TOTAL AMOUNT OF MONEY AVAILABLE
MIN	I	INDEX OF SMALLEST ACCIDENT REDUCTION/COST RATIO
NOSTOP	I	SIGRED IN BUGAIE FLAG WHICH DETERMINES IF STOP SIGNS SHOULD BE CONSIDERED AS AN UPGRADE DEVICE, O -NO, 1 - YES
OFF	I	OFFSET VALUE STORED FOR PASSIVE CROSSINGS WITH ONE TRACK STATUS
OFFSET	I	VALUE DETERMINES WHICH ONE OF FOUR SETS OF EXTENDED EFFECTIVENESS UPGRADE VALUES WILL BE USED ON THE CURRENT CROSSING
PA	R	PREDICTED ACCIDENTS STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
PC	I	PRESENT WARNING DEVICE CLASS STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
RATIO	R	THIS VARIABLE HOLDS EFFECTIVENESS/COST RATIOS FOR PASSIVE TO LIGHTS AND PASSIVE TO CATES UPGRADES
SEVFLG	I	FLAG WHICH DETERMINES IF ACCIDENT SEVERITY SHOULD BE
SOPFLG	I	FLAG WHICH DETERMINES IF FATALITIES ONLY OR COMBINED CASUALTY INDEX SHOULD BE USED AS A PROBABILITY MEASURE, 1 - COMBINED CASUALTY INDEX, 1 - COMBINED INDEX, 0 -FATALITIES ONLY
STP	I	STOP SIGN QUALIFIER STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
STPFLG	I	FLAG WHICH DETERMINES IF A CROSSING QUALIFIES FOR STOP SIGN UPGRADE, 1 - YES, 0 - NO
TRACKS	I	NUMBER OF TRACKS
TRAINS	I	NUMBER OF TRAINS
TRKS	I	NUMBER OF TRACKS STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
TRNS	I	NUMBER OF TRAINS STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
UR	I	TENS DIDGET OF FUNCTIONAL CLASSIFICATION, OF ROAD STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK
XID	I	CROSSING IDENTIFICATION NUMBER STORED FOR PASSIVE CROSSINGS WITH SINGLE TRACK

EXHIBIT C-2. VARIABLE DICTIONARY FOR THE RESOURCE ALLOCATION PROGRAM (CONT)
ACR/C RATIO	PREDICTED ACCIDENT OR ACCIDENT OR CASUALTY MEASURE ID NUMBER CLASS TOTAL TRAINS	TOTAL TRUCKS FUNC, CLASS AADT RECOMMENDED DEVICE	COST	ACCIDENT OR CASUALTY REDUCTION
7.319916 6.798189 6.066612 6.061464 5.387651 4.946551 4.946551 4.946551 4.672418 4.396058 4.388587 3.774107 3.761930 3.659708 3.555914 3.362426 3.344532 3.344532 3.342519	0.622723002153K712 0.554902000118P415 0.547862000213K7 4 0.494767002972B422 0.314638003395J4 5 0.439817000124T715 0.414115002081J412 0.398576000120R415 0.315590003566H710 0.308170000223R7 4 0.315651002087A414 0.289450002090H7 8 0.248118002708E7 2 0.241376002713P7 4 0.331321003640K727 0.227675000341T7 4 0.284186002121E712 0.284186002121E712 0.28418600218074 4	119 6380GATE 117 1750GATE 317 6950GATE 108 500LIGHT 116 3530GATE 316 5100GATE 119 4200GATE 316 5100GATE 119 130GATE 119 130GATE 119 2740LIGHT 119 3030GATE 216 650GATE 118 30515GATE 119 31515GATE 216 1500GATE 114 12800GATE 115 150GATE 116 880GATE 117 31515GATE 216 1500GATE 114 12800GATE 116 880GATE 119 1000GATE 116 25040GATE 119 1800LIGHT	58700. 65300. 58700. 65300. 43800. 58700. 65300. 65300. 58700.	0.4296790 0.4439220 0.3561100 0.3958140 0.2359780 0.3034740 0.3230100 0.3188611 0.2808750 0.2742710 0.1925470 0.2578100 0.2215400 0.2218400 0.2208250 0.2048250 0.2048250 0.20487320 0.2026310 0.1973740 0.1960240 0.1960280
3.333519 3.238443 3.22203 3.202999 3.193567 3.177647 3.137275 3.115458 2.909045 2.861632 2.847971 2.779522 2.777379 2.775377 2.775377 2.775870 2.759457 2.759457 2.754762	0.19487800298014 4 0.213592002124A7 8 0.188185002981A4 4 0.229986002973H422 0.210632003487K710 0.209582000153D7 7 0.292314003655A727 0.292314003655A727 0.205480002125G7 8 0.191866002734H7 6 0.188739002115B7 8 0.166321000509J4 2 0.199579002085L414 0.236279002085L414 0.236150003631L727 0.16208200069254 1 0.182885000233W7 4 0.249200002773Y7 4 0.181690000229G7 2	119 1800L1GHT 119 9590GATE 119 1440LIGHT 109 2350GATE 106 8500GATE 218 13200GATE 116 7060GATE 118 3720GATE 108 160LIGHT 119 3720GATE 108 160LIGHT 119 2430LIGHT 116 12890GATE 108 850LIGHT 116 5000GATE 108 850LIGHT 117 5920GATE 108 850LIGHT 117 5920GATE 716 11871GATE 114 6500GATE	43800. 58700. 43800. 58700. 58700. 58700. 58700. 58700. 43800. 43800. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700.	0.1460080 0.1900970 0.1411240 0.1402910 0.1874620 0.1865280 0.1841580 0.1828770 0.1707610 0.1679780 0.1247410 0.1217430 0.1629440 0.1629440 0.1215620 0.1627670 0.1619800 0.1617050
2.744271 2.735495 2.725405 2.706534 2.891695 2.579988 2.550344 2.539234 2.533519 2.508054 2.486282 2.449897 2.401634	0.208373000151P4 7 0.232715002119D712 0.231857003639R727 0.158062000196W4 2 0.177531000221C7 4 0.219486003612G732 0.238628003638J727 0.168208001897N7 6 0.167475002173W7 2 0.167098002031F7 4 0.180086003565B411 0.163983000420E7 4 0.2084190021325712 0.159335000490U7 2 0.140255002058P4 6	209 200GATE 118 13140GATE 117 4250GATE 107 7000LIGHT 114 4790GATE 107 2200GATE 216 3800GATE 108 3210GATE 117 3670GATE 106 3140GATE 117 1500LIGHT 108 2600GATE 117 5260GATE 102 5000GATE 108 590LIGHT	65300. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700. 58700.	0.1792010 0.1605740 0.1599810 0.1185480 0.1580030 0.1514450 0.1503360 0.1497050 0.1497050 0.1497050 0.1497530 0.1487180 0.1098530 0.1459450 0.1438090 0.1418080 0.1051920

EXHIBIT C-3. SAMPLE OUTPUT FROM RESOURCE ALLOCATION PROGRAM

Field	Column	Length	Data Type	Field Description
1	1	10	F	Accident or casualty reduction/cost ratio in accidents per million dollars
2	11	10	F	Accident or casualty measure
3	21	7	A	Crossing identification number
4	28	1	I	Present warning device class
5	29	2	I	Total trains
6	31	3	I	Total tracks
7	34	1	I	Tens digit functional classification of road
8	35	1	I	Units digit functional classification of road
9	36	б	I	Annual average daily vehicular traffic
10	42	5	А	Recommended warning device
11	47	7	F	Cost of warning device upgrade
12	54	10	F	Accidents prevented
13	64	1	I	Stop qualification flag

***** DATA TYPE:

I - integer

A - alphanumeric F - fixed decimal

3

EXHIBIT C-4. FIELD DESCRIPTIONS FOR OUTPUT FROM THE RESOURCE ALLOCATION PROGRAM

C**************** С* C* THIS PROGRAM COMPUTES THE DECISION Ç≭ CRITERIA AND PRINTS THE OUTPUT OF C* THE RESOURCE ALLOCATION ALGORITHM C* IN A REPORT FORMAT. C* C* C* C* C* C* UNIT 20 - FINAL BENEFIT/COST RATIO INPUT FILE SORTED IN DESCENDING ORDER OF BENEFIT/COST RATIO UNIT 21 - REPORT OUTPUT FILE UNIT 22 - COST/EFFECTIVENESS/BUDGET LEVEL C* C* INPUT FILE UNIT 23 - INPUT FILE FOR LOWEST COST/BENEFIT RATIO Ç* C* UNIT 24 - USER REQUEST/PROGRAM OPTIONS FILE C* UNIT 5 - INTERACTIVE INPUT FILE FOR RUN TITLE Č* C* C* C С INTEGER EFFLAG, SEVFLG, SOPFLG, NOSTOP, STPFLG, OFFSET INTEGER RURURB(2), ID(2), CLASS, TRACKS, WARN, TITLE(3), FC10, * DEVICE(2,7), DAY(2), PAGE, WHICH, STOP(2), REPTYP(3,8) С REAL COST(3), EFFECT(12), RATIO(4), COSTS, DUMP(12) С COMMON /FIG/ EFFLAG, SEVFLG, SOPFLG, NOSTOP, WHICH С DATA RURURB/'RURAL','URBAN'/ С DATA DEVICE/ 'NONE ', ' 'OTHER',' SIGN' 'STOP','SIGN' * * 'CROSS','BUCK 'SPECI','AL 'HWY S','GNL 'LIGHT',' × * * 1 * С * * * ± 0000 C* С OPEN(UNIT=20, FILE= 'ALOC.DAT') OPEN(UNIT=21, FILE= 'REP.DAT') OPEN(UNIT=22, FILE='BENCOS.DAT') ¢ C* Č* READ USER OPTIONS FILE C* READ(24,5) EFFLAG, SEVFLG, SOPFLG, NOSTOP 5 FORMAT(41) С С TCOST=0 TBEN=0. ¢ Ç Ċ* QUERY REPORT TITLE

WRITE(5,10)
FORMAT(' ENTER TITLE OF RUN: ')
READ(5,20) TITLE
FORMAT(3A5)
READ STANDARD COST AND EFFECTIVENESS DATA
READ(22 20) COST
EOPMAT(3E10 0)
READ(22, 40) = EEECT(1) = EEECT(2) = EEECT(2)
READ(22, 40) = EFFECI(1), EFFECI(2), EFFECI(3)
FURMAL(3F10.2)
IF(EFFLAG.EQ.O) GOTO 45
READ EXTENDED EFFECTIVENESS DATA
READ(22,42) EFFECT
FORMAT(12F10 2)
READ(22,42) DUMP
READ FOTAL AMOUNT FUNDS AVAILABLE
READ(22,50) MAXAMT
FORMAT(I9)
READ MINIMUM ACC.RED./COST RAT. FOR RUN
READ(23,60) BCMIN
FORMAT(F8.4)
INITIALIZE STOP QUALIFICATIONS VARIABLES
STOP(1)=' '
STOP(2)=/ /
TE(NOSTOR EO O) COTO 61
CTOD(1)=/ NO /
STUP(1)- NU
STUP(2)= TES
CALL DATE(DAY)
PAGE = 1
PRINT OVERALL REPORT HEADING
N=SEVFLG+SOPFLG+1

	WRITE(21,101) DAY,(REPTYP(N,J),J=1,8),TITLE,MAXAMT,
*	
101	FURMALLY IS, 283, 140, / DATE-MICHARY CONSEING RECOMPLETATION RECULTS/
*	T120 'PAGE 1'/T40, 'BASED ON PREDICTED ' 844/
*	T60. FOR (.3A5. /T40. TOTAL BUDGET: \$'.19/
*	T43, 'WARNING DEVICE P>FL P>G FL>G'/
*	T45, 'COST:',
*	9X,3(2X,'\$',F6)/)
ç	
č	
-	IF(EFFLAG.E0.0) GOTO 102
С	
C* C*	PRINT EXTENDED EFFECTIVENESS HEADING.
L.≠	WRITE(21 79) EFFECT(1) EFFECT(7) EFFECT(4).
*	EFFECT(10), EFFECT(2), EFFECT(8), EFFECT(5), EFFECT(11),
*	EFFECT(3), EFFECT(9), EFFECT(6), EFFECT(12)
00079	FORMAT(T40, 'EXTENDED EFFECTIVENESS VALUES: '/
*	T57, 'TRAINS <= 10', T77, 'TRAINS >= 11'/
*	T40, 'UPGRADE', T54, 'SINGLE', T64, 'MULTIPLE',
*	T74, SINGLE', 184, MULTIPLE'/ TAO, ADDITONA TEA, (TRACKA TEA, (TRACKA T74, ATRACKA
*	140, OPIION, 154, TRACK, 164, TRACK ,174, TRACK , 194 /TPACK//
*	T40. //. T54. //. T64. //. T74. //
*	,T84,''/
*	T40, 'PASSIVE - FL', T54, F4.2, T64, F4.2, T74, F4.2,
*	T84,F4.2/
*	140, 'PASSIVE - G', 154, F4.2, 164, F4.2, 174, F4.2,
*	184,14.27 Tao (Flashtne - C/ Tea Fa 2 Tea Fa 2 T7a Fa 2
*	T84.F4.2/)
C*	
C*	
	LINE=18
•	GOTO 110
C*	
C*	DDINT STANDARD FEFECTIVENESS HEADING
C*	PRIM STANDARD ET LOTTERESS TEADING.
C*	
00102 00069	WRITE(21,69) EFFECT(1),EFFECT(2), EFFECT(3) Format(T40,'Standard Effectiveness values: ',3(F3.2,6x)/) Line=11
	GDT0 110
C	
C*	NEW PAGE!! PRINT PAGE HEADINGS
C	
C INF	
105	WADTE(21 108) DAY DAGE
106	FORMAT('1', T8, 245, T120, 'PAGE', 13/)
Ç	
С	
	LINE=3
C	
C	
110	WHICH= T+NUSIUP#J+SEVFLG+SUPFLG CALL MEADED(WHTCH)
с	WHEN HERVER(WHIV)
č	

LINE=LINE+6 C C C C * C * C * MAIN PROCESSING LOOP * * * * C* C* C C SELECT NEXT CROSSING ************************************** 200 READ(20,201,END=999) BENCUS,AVAL,ID,CLASS,TRAINS,TRACKS, FC10, FC1, AADT, WARN, COSTS, BEN, STPFLG FORMAT(F10.6, F10.6, A4, A3, I1, I2, I3, 2I1, I6, A5, F7.0, F10.6, I1) 201 C C C C C C C * C * ********************************* EFFECTIVENESS QUALIFICATION * * * * C* ********************************* ¢ Ċ OFFSET=0 IF(EFFLAG.EQ.O) GOTO 204 С IF(TRACKS.GT.1) GOTO 202 IF(TRAINS.GE.11) OFFSET=3 GOTO 204 С OFFSET=6 202 IF(TRAINS.GE.11) OFFSET=9 С Č* C* C* ******************************* CALCULATE BEN/COS RATIOS × * * Č≭ C C ************* 204 RATIO(1)=EFFECT(OFFSET+1)/COST(1) RATIO(2)=(EFFECT(OFFSET+2)-EFFECT(OFFSET+1))/(CDST(2)-COST(1)) RATIO(3)=EFFECT(OFFSET+2)/COST(2) RATIO(4)=EFFECT(OFFSET+3)/COST(3) с с 00000 TCOST=TCOST+COSTS TBEN=TBEN+BEN KCOST=TCOST/1000. +0.5 0000 IF(CLASS.GT.4) GO TO 230 С IF(TRACKS.GT.1) GD TO 220 Ç IF(RATIO(2).GT.RATIO(1)) GO TO 220 с с с

```
C* C* C* C* C* C* C*
                    ******
                     SINGLE TRACK PASSIVE
             *
                                                              *
                            CROSSING
             *
                 CALCULATE DECISION CRITERIA
             DC1=BCMIN/(AVAL*RATIO(1)*10**6)
             DC2=BCMIN/(AVAL*RATIO(2)*10**6)
 C
C
             J=STPFLG
C
C*
C*
C*
                   WRITE CURRENT CROSSING TO REPORT FILE
 C*
             WRITE(21,205) ID, AVAL, BENCOS, WARN, (DEVICE(J, CLASS), J=1,2), TRACKS,
TRAINS, KCOST, TBEN, DC1, DC2, STOP(STPFLG+1)
FORMAT(T2, A4, A3, T10, F10.6, T23, F10.6, T40, A5, T52, 2A5,
T63, I2, T71, I2, T79, I6, T90, F10.6, T101, F5.3,
  205
         *
                          T108, F5.3, T128, A5)
C C * C*
C * C*
C * C*
             GOTO 250
*************************
                   MULTIPLE TRACK PASSIVE
             *
                                                               *
                            CROSSING
                                                               *
             ×.
                         COMPUTE DECISION CRITERIA
             DC3=BCMIN/(AVAL*RATIO(3)*10**6)
                WRITE CURRENT CROSSING TO REPORT FILE
Č*
            WRITE(21,211) ID, AVAL, BENCOS, WARN, (DEVICE(J, CLASS), J=1,2), TRACKS,
TRAINS, KCOST, TBEN, DC3, STOP(STPFLG+1)
FORMAT(T2, A4, A3, T10, F10.6, T23, F10.6, T40, A5, T52, 2A5,
T63, I2, T71, I2, T79, I6, T90, F10.6, T115, F6.3,
        *
  211
        .
                         T128,A5)
        *
C
C
C
*
C
*
C
*
C
*
C
             GOTO 250
0000000
```

Ç* ******************************* C* C* C* FLASHING LIGHTS × CROSSING ******************************** C* C* C* COMPUTE DECISION CRITERIA 230 DC4=BCMIN/(AVAL*RATIO(4)*10**6) C* C* C* C* WRITE CURRENT CROSSING TO THE REPORT FILE WRITE(21,221) ID, AVAL, BENCOS, WARN, (DEVICE(J, CLASS), J=1,2), TRACKS, TRAINS, KCOST, TBEN, DC4, STOP(STPFLG+1) FORMAT(T2, A4, A3, T10, F10.6, T23, F10.6, T40, A5, T52, 2A5, T63, I2, T71, I2, T79, I6, T90, F10.6, T121, F5.3, 221 * * T128,A5) Ç C* C* C* C* C С C LINE=LINE+1 250 IF(LINE.GT.60) GD TO 105 GO TO 200 С С C CLOSE(UNIT=20) CLOSE(UNIT=21) CLOSE(UNIT=22) С С 999 CALL EXIT С END SUBROUTINE HEADER(WHICH) C***** C* C* THIS SUBROUTINE PRINTS THE APPROPRIATE HEADER FOR EACH PAGE OF REPORT OUTPUT. C* C* ***** C**** Ċ Ĉ Ċ INTEGER WHICH С Ç C C C C C C C GOTO (110,112,111,113,115,114) WHICH C C C * C ? PAGE HEADER PRED. ACC. REPORT NO STOP OPTION. С 110 WRITE(21,1110) WRITE(21,1110) FORMAT(T25,'ACCIDENT', T90,'CUMULATIVE'/T2,'CROSSING', T12,'PREDICTED',T25,'REDUCTION',T38,'RECOMMENDED', T52,'PRESENT',T63,'TOTAL',T70,'TOTAL',T79,'CUMULATIVE', T90,'REDUCED',T101,'DECISION',T110,'CRITERIA', T119,'VALUES'/T4,'ID #',T12,'ACCIDENTS', T25,'CDST RATIO',T40,'WARNING',T52,'WARNING', 1110 * * * ×

```
T63, '# DF',T71,'# DF',T82,'COST',T90,'ACCIDENTS'/
T12,'PER YEAR',T25,'(ACC/$MILL)',T40,'DEVICE',
T52,'DEVICE',T82,'TRACKS',T70,'TRAINS',T78,
'($THOUSAND)',
             *
             *
             *
             *
                                       T10, 'PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
T121, 'DC4'/T2, '-----',
T12, '-----', T24, '-----', T39, '------',
             *
             ±
                                       T52, '-----', T62, '-----', T70, '-----', T79,
             *
             ±
                                        /_____
                                       T90, '----', T101, '---', T108, '---', T115, '---',
                                       T121, '---'/)
             *
¢
                    GOTO 999
с
с
Č*
                        PAGE HEADER COMB./CAS. REPORT NO STOP OPTION.
č
   111
                   WRITE(21,1111)
                     FORMAT(T25, 'C.C.I.*', T90, 'CUMULATIVE',/
T2, 'CROSSING',
01111
                                      T2, 'CROSSING',

T12, 'PREDICTED', T25, 'REDUCTION', T38, 'RECOMMENDED',

T52, 'PRESENT', T63, 'T0TAL', T70, 'T0TAL', T79, 'CUMULATIVE',

T90, 'REDUCED', T101, 'DECISION', T110, 'CRITERIA',

T119, 'VALUES'/T4, 'ID #', T12, 'C.C.I.*',

T25, 'COST RATIO', T40, 'WARNING', T52, 'WARNING',

T63, '# OF', T71, '# OF', T82, 'COST', T90, 'C.C.I.*'/

T12, 'PER YEAR', T25, '(ACC/$MILL)', T40, 'DEVICE',

T52, 'OEVICE', T62, 'TRACKS', T70, 'TRAINS', T78,
 '($THOUSAND)',

T90, 'PER YEAR', T101, 'DC1', T105, 'DC2', T115, 'CC2',
                                      T100, 'PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
T121, 'DC4'/T2, '-----',
T12, '-----', T24, '-----', T39, '-----',
                                       T52, '-----', T62, '-----', T70, '-----', T79,
             *
                                        ×
                                       T90, '----', T101, '---', T108, '---', T115, '---',
             *
                                       T121, '---'/)
С
                   GOTO 999
C
č
c∗
c⁻
                        PAGE HEADER FATALS REPORT NO STOP OPTION.
   112
                   WRITE(21,1112)
   1112
                   FORMAT(T12, 'PREDICTED', T25, 'FATAL ACC.', T90, 'CUMULATIVE'/
                                      T2. 'CROSSING'
                                     T2, 'CROSSING',

T12, 'FATAL', T25, 'REDUCTIDN', T38, 'RECOMMENDED',

T52, 'PRESENT', T63, 'TOTAL', T70, 'TOTAL', T79, 'CUMULATIVE',

T90, 'REDUCED', T101, 'DECISION', T110, 'CRITERIA'.

T119, 'WALUES'/T4, 'ID #', T12, 'ACCIDENTS',

T25, 'COST RATIO', T40, 'WARNING', T52, 'WARNING',

T63, '# OF', T71, '# OF', T82, 'COST', T90, 'FATAL ACC'/

T12. 'PER YEAR', T25, '(ACC/$MILL)', T40, 'DEVICE'.

T52, 'DEVICE', T82, 'TRACKS', T70, 'TRAINS', T78,

'($THOUSAND)'.

T90, 'PEP, YEAP', T101, 'DC1', T108, 'DC2', T115, 'DC3'
            *
             *
                                      T10, 'PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
T121, 'DC4'/T2, '-----',
T12, '-----', T24, '-----', T39, '-----',
                                      T52, '-----', T62, '-----', T70, '-----', T79,
                                               ----/
                                      T90, '----', T101, '---', T108, '---', T115, '---',
                                      T121, '---'/)
С
                   GOTO 999
С
С
```

```
C*
                       PAGE HEADER PRED. ACCS. REPORT WITH STOP QUALIFICATION OPTION
С
   113
                   WRITE(21,1113)
   1113
                   FORMAT(T25, 'ACCIDENTS', T90, 'CUMULATIVE', T128, 'MEETS'/
                                     T2, 'CROSSING'
                                     12, CROSSING',

T12, 'PREDICTED', T25, 'REDUCTION', T38, 'RECOMMENDED',

T52, 'PRESENT', T63, 'TOTAL', T70, 'TOTAL', T79, 'CUMULATIVE',

T90, 'REDUCED', T101, 'DECISION', T110, 'CRITERIA',

T119, 'VALUES', T128, 'STOP'/T4, 'ID #', T12, 'ACCIDENTS',

T25, 'COST RATIO', T40, 'WARNING', T52, 'WARNING',

T63, '# OF', T71, '# OF', T82, 'COST', T90, 'ACCIDENTS', T128,
            ±
            *
            *
                                      'SIGN'/
                                     T12,'PER YEAR',T25,'(ACC/$MILL)',T40,'DEVICE',
T52,'DEVICE',T62,'TRACKS',T70,'TRAINS',T78,
'($THOUSAND)'.
                                     T90, /PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
T121, 'DC4', T128, 'RQMNT'/T2, '-----',
T12, '-----', T24, '-----', T39, '-----',
T52, '-----', T62, '-----', T70, '-----', T79,
            *
            *
            *
                                         ----/
                                     T90, '-----', T101, '---', T108, '---', T115, '---', T121, '---', T128, '----',
            *
            *
С
                  GOTO 999
C
С
C*
                     PAGE HEADER COMB./CAS. REPORT WITH STOP QUALIFICATION OPTION
С
  114
                  WRITE(21,1114)
01114
                  FORMAT(T25, 'C.C.I. *'
                                     T90, 'CUMULATIVE', T128, 'MEETS'/
            *
            *
                                     T2, 'CROSSING'
                                    12, 'CRUSSING',

T12, 'PREDICTED', T25, 'REDUCTION', T38, 'RECOMMENDED',

T52, 'PRESENT', T63, 'TOTAL', T70, 'TOTAL', T79, 'CUMULATIVE',

T90, 'REDUCED', T101, 'DECISION', T110, 'CRITERIA',

T119, 'VALUES', T128, 'STOP'/T4, 'ID #', T12, 'C.C.I.*',

T25, 'COST RATIO', T40, 'WARNING', T52, 'WARNING',

T63, '# OF', T71, '# OF', T82, 'COST', T90, 'C.C.I.*', T128,
            *
            *
                                      'SIGN'/
                                     T12, 'PER YEAR', T25, '(ACC/$MILL)', T40, 'DEVICE',
T52, 'DEVICE', T62, 'TRACKS', T70, 'TRAINS', T78,
'($THOUSAND)',
            *
            *
            *
                                    T90, 'PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
T121, 'DC4', T128, 'RQMNT'/T2, '-----',
T12, '-----', T24, '-----', T39, '-----',
            *
            *
                                     T52, '-----', T62, '-----', T70, '-----', T79,
           *
                                    T90, '-----', T101, '---', T108, '---', T115, '---',
T121, '---', T128, '----'/)
           *
            ±
С
                  GOTO 999
С
```

č

C*	PAGE H	EADER FATALS REPORT WITH STOP QUALIFICATION OPTION
U		
115	WRITE(2	1,1115)
1115	FORMAT(T12, 'PREDICTED', T25, 'FATAL ACC.', T90, 'CUMULATIVE'
t I	ŧ	,T128,'MEETS'/T2,'CROSSING',
1	t i i i i i i i i i i i i i i i i i i i	T12, 'FATAL', T25, 'REDUCTION', T38, 'RECOMMENDED',
1	k .	T52. PRESENT . T63. TOTAL . T70. TOTAL . T79. CUMULATIVE .
*	k i i i i i i i i i i i i i i i i i i i	TSO 'REDUCED' T101 'DECISION' T110 'CRITERIA'
		TILD (VALUES / TIDS / STAD//TA /ID #/ TID /ACCIDENTS/
		736 (cost datio) 740 (addition) 714 (740 (120 , 120)
-	r.	125, CUST RATIO, THU, WARNING, 152, WARNING, 182 /# 05/ 134 /# 05/ 180 /COST/ 180 /FATAL ACC / 1/00
4	F	163, "# UF", 171, "# UF", 182, "CUS1", 190, "FATAL ACC.", 1128,
4	F	'SIGN'/
1	r i	T12,'PER_YEAR',T25,'(ACC/\$MILL)',T40,'DEVICE',
3	r i	T52, 'DEVICE', T62, 'TRACKS', T70, 'TRAINS', T78,
1	ĸ	(\$THOUSAND),,
	r i	T90, 'PER YEAR', T101, 'DC1', T108, 'DC2', T115, 'DC3',
4	k	T121. (DC4/. T128. (ROMNT//T2. //.
ł	t i	T12 (
,		T52 // T62 // T70 // T79
	•	
-		TAO // TIOI // TIOR // TITE //
		130,, 110,, 1103,, 1113,,
_ '		[121, '', [128, ''/]
C		
C 899	RETURN	
-	END	

.

.

EXHIBIT C-5. RESOURCE ALLOCATION REPORT PROGRAM (Cont.)

.

• • .

APPENDIX D

.

.

C* C*4 C* C* С Ç THIS PROGRAM GENERATES A LISTING, IN REPORT FORMAT, C* С OF ALL CROSSINGS THAT QUALIFY FOR STOP SIGNS. C* С C* C* C* Ċ UNIT-20 INVENTORY INPUT FILE WITH FINAL PREDICTED ACCIDENTS* C C UNIT-21 OUTPUT FILE: REPORT OUTPUT FILE ¢≯ С C* С NOTE: THIS PROGRAM GENERATES THREE DIFFERENT REPORTS C* C* č EACH REPORT RANKS CROSSINGS BY ONE OF THE FOLLOWING MEASURES : PREDICTED ACCIDENTS, PREDICTED FATAL Accidents or combined casualty index.The input file С C* С Ċ* SHOULD BE SORTED ON THE MEASURE THAT IS TO BE С Č* С CONTAINED IN THE REPORT. C* С C* C* INTEGER DEVICE(2,7), REPTYP(3,8), NS, DS, NT, DT, STOPS, FC10, FC1, AADT, TITLE(3), PAGE, CLASS, ID(2), LINE, * DAY(2), STPFLG, TRAINS, TRACKS, CHOICE, MTRKS, OTRKS, * * RURURB(2) REAL FATAL, CMBCAS, INJURY, A, AC DATA RURURB/'RURAL', 'URBAN'/ DATA DEVICE/'NONE ', ', 'OTHER', ' SIGN' STOP ', SIGN ' * 'CROSS', 'BUCK 'SPECI', 'AL 'HWY S', 'GNL 'LIGHT', ' * * С DATA REPTYP/'ACCI', 'FATA', 'COMB', 'DENT', 'L AC', 'INED', 'S ', 'CIDE', 'CAS', ', 'NTS ', 'UALT', ', ', 'Y IN', ', ', 'NTS ', 'UALT', ', ', ', 'IN', ', ', ', 'DEX ', 'DEX ', ', 'I* '/ C OPEN(UNIT=21,FILE='STOP.DAT') OPEN(UNIT=20, FILE='ALA.DAT') CALL DATE(DAY) C* INPUT REPORT TYPE AND TITLE OF REPORT WRITE(5,66) FORMAT(110, ' PLEASE ENTER REPORT TITLE : ') 00066 READ(5,77) TITLE FORMAT(3A5) 00077 WRITE(5.88) FORMAT(//,T5,'SHOULD REPORT INCLUDE ACCIDENT ', 'PREDICTION RESULTS FOR : '// 88000 * T10, 'PREDICTED ACCIDENTS * (ENTER 1) 1/ T10, 'FATAL ACCIDENTS T10, 'COMBINED CASUALTY INDEX (ENTER 2)'/ * (ENTER 3) //) * READ(5,99) CHOICE

EXHIBIT D-1. STANDARD STOP SIGN REPORT PROGRAM

00099 FORMAT(I)

PAGE = 1

```
C
C*
C*
                PRINT STOP REPORT HEADING
          WRITE(21,109) DAY,PAGE,TITLE
FORMAT ('1',T8,2A5,
T40,'RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION',
'RESULTS',T120,'PAGL ',I3/T40,'CANDIDATE CROSSINGS',
'FOR STANDARD HIGHWAY STOP SIGNS'/
00109
       *
       *
                      T52, 'FOR ', 3A5,/
T40, '* ALL CANDIDATES ARE SINGLE TRACK ',
'LOCAL HIGHWAY CROSSINGS'/T40, '------'
                              1 ----
                      T40, '-REFER TO PARAGRAPH 88-9 OF THE ',
'MANUAL OF UNIFORM'/T40, 'TRAFFIC CONTROL DEVICES ',
'FOR FACTORS TO BE CONSIDERED PRIOR TO'/
T40, 'MAKING STOP SIGN INSTALLATION ',
       ×
                       DECISIONS. 1/
                       T40, '-----',
                       /----//)
       ±
          CALL HEADER(CHOICE)
          LINE=18
          PAGE=PAGE+1
          GOTO 100
С
С
                NEXT PAGE !! PRINT HEADINGS
¢
          WRITE(21,105) DAY,PAGE
FORMAT('1',T8,2A5,T120,I3)
00111
00105
          CALL HEADER(CHOICE)
          LINE=7
          PAGE=PAGE+1
С
C*
          *********
C*
                                                           *
Č∗
C≭
                   MAIN PROCESSING LOOP
                                                           *
          *
                   SELECT NEXT CROSSING
                                                           *
          *
C*
          ±
                                                           ±
C*
          ************
С
 100
          READ(20,5000, END=500) FATAL, INJURY, CMBCAS, A, ID, CLASS,
                                STOPS, NS, NT, DS, DT, MTRKS, OTRKS, FC10, FC1, AADT
      ×
      ±
          FORMAT(4F10.7,10X,A4,A3,18X,2I1,4I2,3X,
I1,I2,3X,2I1,I6)
 5000
C
C
C*
                TOTAL TRAINS AND TRACKS FOR CURRENT CROSSING
C*
C*
          TRAINS=NS+NT+DS+DT
          TRACKS=MTRKS+OTRKS
С
С
С
```

EXHIBIT D-1. STANDARD STOP SIGN REPORT PROGRAM (Cont.)

	5 th -12
C*	**********
C*	*
C*	* STOP SIGN QUALIFICATION *
C*	* *
C* C	********
- -	STPFLG=0
L L	IF(STOPS.GE.1) GDTO 100
C	
	IF(CLASS.GE.5) GOTO 100 IF(FC1.NE.9) GOTO 100
	IF(TRAINS, LE. 10) GOTO 100
	IF(TRACKS.NE.1) GOTO 100
	IF(FC10.NE.1) GOTO 125
	IF (AADT, GT, 1500) GOTO 100
	GOTO 150
125	IF(AADT GT 400) GOTO 100
c	
•	
C+	
C+	DETERMINE ACCIDENT OF CASHALTY MEASURE
C+	DETERMINE ACCIDENT OR GROOMETT MEASURE
	10-1
150	ACTA
	IF(CHUICE.EQ.2) AC=FAIAL
	IF(CHDICE.EQ.3) AC=CMBCAS

C*		·
C*		WRITE CURRENT CROSSING TO REPORT FILE
C*		1
		WRITE(21,248) ID.AC. (DEVICE(J.CLASS), J=1,2).
	*	TRAINS, AADT, RURURB(FC10+1)
248		FORMAT(T26,A4,A3,T38,F10,6,T56,2A5,T72,I2
	*	T83, 16, T100, A5)

LINE=LINE+1			
IF(LINE,GE,60)	GOTO	111	

GOTO 100

500 CLOSE(UNIT=20) CLOSE(UNIT=21) CALL EXIT END

SUBROUTINE HEADER(WHICH)

C*

 \sim

.

C* INTEGER WHICH GOTO (116,117,118) WHICH

EXHIBIT D-1. STANDARD STOP SIGN REPORT PROGRAM (Cont.)

C* C PAGE HEADER STOP SIGN QUAL. REPORT (PRED. ACCS.) 116 WRITE(21,1116) 1116 FORMAT(T84, 'ANNUAL'/T26, 'CROSSING', T40, 'PREDICTED', T55, 'PRESENT', T70, 'TOTAL', T84, 'AVERAGE', T98, 'CROSSING',/ T28, 'ID #', T40, 'ACCIDENTS', * * T28,'ID #', 140, ACCIDENTS', T56, 'WARNING', T70, 'TRAINS', T84, 'DAILY', T98, 'LOCATION'/ T40, 'PER YEAR', T56, 'DEVICE', T70, 'PER DAY', T84, 'TRAFFIC', T98, 'URBAN/RURAL',/ T26, '------', T40, '-----', T56 '------', T40, '-----', * * × * T56, '----', T70, '-----', T84, '-----', T98, '------'/) * ¢ GOTO 999 С ċ Č* PAGE HEADER STOPS QUAL. REPORT (COMB./CAS) С 117 WRITE(21,1117) FORMAT(140, 'PREDICTED', T84, 'ANNUAL'/T26, 'CROSSING', T40, 1117 'COMBINED'.T56,'PRESENT', T70,'TOTAL',T84,'AVERAGE',T98,'CROSSING',/ T28,'ID_#',T40,'CAS_INDEX', * * T28,'ID #',140,'GAS INDEX', T56,'WARNING', T70,'TRAINS',T84,'DAILY',T98,'LOCATION'/ T40,'PER YEAR',T56,'DEVICE', T70,'PER DAY',T84,'TRAFFIC',T98,'URBAN/RURAL',/ T26,'------',T40,'------', × t * T56, '-----' ÷ T70, '-----', T84, '-----', T98, '------'/) * C GOTO 999 С C C≠ PAGE HEADER STOP SIGN QUAL. REPORT (FATALS) С 118 WRITE(21,1118) WRITE(21,1118) FORMAT(T40, 'PREDICTED', T84, 'ANNUAL'/T26, 'CROSSING', T40, 'FATAL', T56, 'PRESENT', T70, 'TOTAL', T84, 'AVERAGE', T98, 'CROSSING',/ T28, 'ID #', T40, 'ACCIDENTS', T56, 'WARNING', T70, 'TRAINS', T84, 'DAILY', T98, 'LOCATION'/ T40, 'PER YEAR', T56, 'DEVICE', T70, 'PER DAY', T84, 'TRAFFIC', T98, 'URBAN/RURAL',/ 1118 × * * * T26, '-----', T40, '-----', T56, '-----', * T70, '-----', T84, '-----', T98, '-----'/) С С 999 RETURN END

★U.S. GOVERNMENT PRINTING OFFICE : 1986-602-168/30068

EXHIBIT D-1. STANDARD STOP SIGN REPORT PROGRAM (Cont.)